On-the-Fly Machine Learning of Atomic Potential in Density Functional Theory Structure Optimization

被引:108
作者
Jacobsen, T. L.
Jorgensen, M. S.
Hammer, B. [1 ]
机构
[1] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
关键词
LOWEST-ENERGY STRUCTURES; EVOLUTIONARY ALGORITHMS; GEOMETRY OPTIMIZATION; GENETIC ALGORITHMS; GLOBAL MINIMUM; SURFACE; CLUSTERS; SEARCH;
D O I
10.1103/PhysRevLett.120.026102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Machine learning (ML) is used to derive local stability information for density functional theory calculations of systems in relation to the recently discovered SnO2(110)-(4x1) reconstruction. The ML model is trained on (structure, total energy) relations collected during global minimum energy search runs with an evolutionary algorithm (EA). While being built, the ML model is used to guide the EA, thereby speeding up the overall rate by which the EA succeeds. Inspection of the local atomic potentials emerging from the model further shows chemically intuitive patterns.
引用
收藏
页数:5
相关论文
共 45 条
  • [11] Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error
    Faber, Felix A.
    Hutchison, Luke
    Huang, Bing
    Gilmer, Justin
    Schoenholz, Samuel S.
    Dahl, George E.
    Vinyals, Oriol
    Kearnes, Steven
    Riley, Patrick F.
    von Lilienfeld, O. Anatole
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (11) : 5255 - 5264
  • [13] Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space
    Hansen, Katja
    Biegler, Franziska
    Ramakrishnan, Raghunathan
    Pronobis, Wiktor
    von Lilienfeld, O. Anatole
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (12): : 2326 - 2331
  • [14] Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies
    Hansen, Katja
    Montavon, Gregoire
    Biegler, Franziska
    Fazli, Siamac
    Rupp, Matthias
    Scheffler, Matthias
    von Lilienfeld, O. Anatole
    Tkatchenko, Alexandre
    Mueller, Klaus-Robert
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) : 3404 - 3419
  • [15] GLOBAL GEOMETRY OPTIMIZATION OF CLUSTERS USING GENETIC ALGORITHMS
    HARTKE, B
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (39) : 9973 - 9976
  • [16] Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity
    Huang, Bing
    von Lilienfeld, O. Anatole
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (16)
  • [17] Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries
    Johnston, RL
    [J]. DALTON TRANSACTIONS, 2003, (22) : 4193 - 4207
  • [18] Combining Evolutionary Algorithms with Clustering toward Rational Global Structure Optimization at the Atomic Scale
    Jorgensen, Mathias S.
    Groves, Michael N.
    Hammer, Bjork
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (03) : 1486 - 1493
  • [19] Amp: A modular approach to machine learning in atomistic simulations
    Khorshidi, Alireza
    Peterson, Andrew A.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2016, 207 : 310 - 324
  • [20] Structure of the ultrathin aluminum oxide film on NiAl(110)
    Kresse, G
    Schmid, M
    Napetschnig, E
    Shishkin, M
    Köhler, L
    Varga, P
    [J]. SCIENCE, 2005, 308 (5727) : 1440 - 1442