Pol III binding in six mammals shows conservation among amino acid isotypes despite divergence among tRNA genes

被引:83
作者
Kutter, Claudia [1 ,2 ]
Brown, Gordon D. [1 ]
Goncalves, Angela [3 ,4 ]
Wilson, Michael D. [1 ,2 ]
Watt, Stephen [1 ]
Brazma, Alvis [3 ]
White, Robert J. [5 ]
Odom, Duncan T. [1 ,2 ,6 ]
机构
[1] Canc Res UK, Cambridge Res Inst, Li Ka Shing Ctr, Cambridge, England
[2] Univ Cambridge, Dept Oncol, Hutchison Med Res Council Res Ctr, Cambridge, England
[3] European Bioinformat Inst, European Mol Biol Lab, Hinxton, England
[4] Univ Cambridge, Grad Sch Life Sci, Cambridge, England
[5] Beatson Inst Canc Res, Glasgow, Lanark, Scotland
[6] Wellcome Trust Sanger Inst, Cambridge, England
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
TRANSCRIPTION FACTOR-BINDING; POLYMERASE-III; TRANSPOSABLE ELEMENTS; GENOME SEQUENCE; NONCODING RNAS; CODON USAGE; HUMAN-CELLS; STEM-CELLS; EXPRESSION; EVOLUTION;
D O I
10.1038/ng.906
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
RNA polymerase III (Pol III) transcription of tRNA genes is essential for generating the tRNA adaptor molecules that link genetic sequence and protein translation. By mapping Pol III occupancy genome-wide in mouse, rat, human, macaque, dog and opossum livers, we found that Pol III binding to individual tRNA genes varies substantially in strength and location. However, when we took into account tRNA redundancies by grouping Pol III occupancy into 46 anticodon isoacceptor families or 21 amino acid-based isotype classes, we discovered strong conservation. Similarly, Pol III occupancy of amino acid isotypes is almost invariant among transcriptionally and evolutionarily diverse tissues in mouse. Thus, synthesis of functional tRNA isotypes has been highly constrained, although the usage of individual tRNA genes has evolved rapidly.
引用
收藏
页码:948 / U50
页数:10
相关论文
共 56 条
[1]  
[Anonymous], 2006, R. R-News, DOI DOI 10.1016/J.AGRF0RMET.2007.05.007
[2]   Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes [J].
Barski, Artem ;
Chepelev, Iouri ;
Liko, Dritan ;
Cuddapah, Suresh ;
Fleming, Alastair B. ;
Birch, Joanna ;
Cui, Kairong ;
White, Robert J. ;
Zhao, Keji .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2010, 17 (05) :629-U132
[3]   DISTRIBUTION OF ORGANELLES AND MEMBRANES BETWEEN HEPATOCYTES AND NON-HEPATOCYTES IN RAT-LIVER PARENCHYMA - STEREOLOGICAL STUDY [J].
BLOUIN, A ;
BOLENDER, RP ;
WEIBEL, ER .
JOURNAL OF CELL BIOLOGY, 1977, 72 (02) :441-455
[4]   Evolution of the mammalian transcription factor binding repertoire via transposable elements [J].
Bourque, Guillaume ;
Leong, Bernard ;
Vega, Vinsensius B. ;
Chen, Xi ;
Lee, Yen Ling ;
Srinivasan, Kandhadayar G. ;
Chew, Joon-Lin ;
Ruan, Yijun ;
Wei, Chia-Lin ;
Ng, Huck Hui ;
Liu, Edison T. .
GENOME RESEARCH, 2008, 18 (11) :1752-1762
[5]   Defining the RNA polymerase III transcriptome: Genome-wide localization of the RNA polymerase III transcription machinery in human cells [J].
Canella, Donatella ;
Praz, Viviane ;
Reina, Jaime H. ;
Cousin, Pascal ;
Hernandez, Nouria .
GENOME RESEARCH, 2010, 20 (06) :710-721
[6]  
Chan Esther T., 2009, Journal of Biology (London), V8, P33, DOI 10.1186/jbiol130
[7]  
Chiaromonte F, 2002, Pac Symp Biocomput, P115
[8]   Prediction and verification of mouse tRNA gene families [J].
Coughlin, Daniel J. ;
Babak, Tomas ;
Nihranz, Chad ;
Hughes, Timothy R. ;
Engelke, David R. .
RNA BIOLOGY, 2009, 6 (02) :195-202
[9]   The functional consequences of alternative promoter use in mammalian genomes [J].
Davuluri, Ramana V. ;
Suzuki, Yutaka ;
Sugano, Sumio ;
Plass, Christoph ;
Huang, Tim H. -M. .
TRENDS IN GENETICS, 2008, 24 (04) :167-177
[10]   The expanding RNA polymerase III transcriptome [J].
Dieci, Giorgio ;
Fiorino, Gloria ;
Castelnuovo, Manuele ;
Teichmann, Martin ;
Pagano, Aldo .
TRENDS IN GENETICS, 2007, 23 (12) :614-622