Advanced strain engineering for state-of-the-art nanoscale CMOS technology

被引:21
作者
Yang Bin [1 ]
Cai Ming [2 ]
机构
[1] Globalfoundries, Hopewell Jct, NY 12533 USA
[2] IBM Semicond Res & Dev Ctr, Hopewell Jct, NY 12533 USA
关键词
strained silicon; embedded SiGe; embedded Si:C; stress memorization technique; dual stress liners; high-K/metal-gate; ELECTRON-TRANSPORT; LOGIC TECHNOLOGY; SOI TECHNOLOGY; HOLE MOBILITY; PERFORMANCE; GATE; SILICON; STRESS; SI; CHANNEL;
D O I
10.1007/s11432-011-4224-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The introduction and advancement of strain engineering has been one of the most critical features for the state-of-the-art nanoscale CMOS transistors. This paper provides an overview of the major strain engineering techniques that have remarkably re-shaped the advanced CMOS transistor architecture, including embedded SiGe (eSiGe), embedded Si:C (eSi:C), stress memorization technique (SMT), dual stress liners (DSL), and stress proximity technique (SPT). The advent of high-K/metal-gate (HKMG) also brings in additional strain benefit with its metal gate stressor (MGS) and replacement gate (RMG) process. Strain engineering continues to evolve and will remain to be one of the key performance enablers for the future generation of CMOS technologies.
引用
收藏
页码:946 / 958
页数:13
相关论文
共 61 条
[1]  
[Anonymous], 1965, Electronics
[2]  
[Anonymous], IEDM
[3]  
Auth C., 2008, 2008 Symposium on VLSI Technology, P128, DOI 10.1109/VLSIT.2008.4588589
[4]   Extending Dual Stress Liner Process to High Performance 32nm Node SOI CMOS Manufacturing [J].
Cai, M. ;
Greene, B. J. ;
Strane, J. ;
Belyansky, M. ;
Tamweber, F. ;
Lee, D. ;
van Meer, H. ;
Laffosse, E. ;
Luning, S. ;
Mocuta, D. ;
Maciejewski, E. .
2008 IEEE INTERNATIONAL SOI CONFERENCE, PROCEEDINGS, 2008, :17-+
[5]   Stress Liner Effects for 32-nm SOI MOSFETs With HKMG [J].
Cai, Ming ;
Ramani, Karthik ;
Belyansky, Michael ;
Greene, Brian ;
Lee, Doug H. ;
Waidmann, Stephan ;
Tamweber, Frank ;
Henson, William .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (07) :1706-1709
[6]  
Chen C, 2004, S VLSI TECHN, P56
[7]  
Chen X., 2006, Symp. on VLSI Tech. Dig, P60
[8]  
Cheng K, 2009, INT EL DEVICES MEET, P43
[9]   High-performance high-κ/Metal gates for 45nm CMOS and beyond with gate-first processing [J].
Chudzik, M. ;
Doris, B. ;
Mo, R. ;
Sleight, J. ;
Cartier, E. ;
Dewan, C. ;
Park, D. ;
Bu, H. ;
Natzle, W. ;
Yan, W. ;
Ouyang, C. ;
Henson, K. ;
Boyd, D. ;
Callegari, S. ;
Carter, R. ;
Casarotto, D. ;
Gribelyuk, M. ;
Hargrove, M. ;
He, W. ;
Kim, Y. ;
Linder, B. ;
Moumen, N. ;
Paruchuri, V. K. ;
Stathis, J. ;
Steen, M. ;
Vayshenker, A. ;
Wang, X. ;
Zafar, S. ;
Ando, T. ;
Iijimas, R. ;
Takayanagi, M. ;
Narayanan, V. ;
Wise, R. ;
Zhang, Y. ;
Divakaruni, R. ;
Khare, M. ;
Chen, T. C. .
2007 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2007, :194-+
[10]   MOBILITY ANISOTROPY AND PIEZORESISTANCE IN SILICON P-TYPE INVERSION LAYERS [J].
COLMAN, D ;
BATE, RT ;
MIZE, JP .
JOURNAL OF APPLIED PHYSICS, 1968, 39 (04) :1923-&