First-Principles Study of Heat Transport Properties of Graphene Nanoribbons

被引:124
作者
Tan, Zhen Wah [1 ,2 ]
Wang, Jian-Sheng [3 ,4 ]
Gan, Chee Kwan [1 ]
机构
[1] Inst High Performance Comp, Singapore 138632, Singapore
[2] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[3] Natl Univ Singapore, Ctr Computat Sci & Engn, Singapore 117542, Singapore
[4] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
关键词
Graphene nanoribbons; thermal transport; nonequilibrium Green's function; phonon dispersion; THERMAL-CONDUCTIVITY; LAYER GRAPHENE; CONDUCTANCE; FABRICATION; TRANSISTORS; RIBBONS;
D O I
10.1021/nl103508m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We use density-functional theory and the nonequilibrium Green's function method as well as phonon dispersion calculations to study the thermal conductance of graphene nanoribbons with armchair and zigzag edges, with and without hydrogen passivation. We find that low-frequency phonon bands of the zigzag ribbons are more dispersive than those of the armchair ribbons and that this difference accounts for the anisotropy in the thermal conductance of graphene nanoribbons. Comparing our results with data on large-area graphene, edge effects are shown to contribute to thermal conductance, enhance the anisotropy in thermal conductance of graphene nanoribbons, and increase thermal conductance per unit width. The edges with and without hydrogen passivation modify the atomic structure and ultimately influence the phonon thermal transport differently for the two ribbon types.
引用
收藏
页码:214 / 219
页数:6
相关论文
共 51 条
[21]   Narrow graphene nanoribbons from carbon nanotubes [J].
Jiao, Liying ;
Zhang, Li ;
Wang, Xinran ;
Diankov, Georgi ;
Dai, Hongjie .
NATURE, 2009, 458 (7240) :877-880
[22]   Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities [J].
Kawai, T ;
Miyamoto, Y ;
Sugino, O ;
Koga, Y .
PHYSICAL REVIEW B, 2000, 62 (24) :R16349-R16352
[23]   Prediction of very large values of magnetoresistance in a graphene nanoribbon device [J].
Kim, Woo Youn ;
Kim, Kwang S. .
NATURE NANOTECHNOLOGY, 2008, 3 (07) :408-412
[24]   Self-passivating edge reconstructions of graphene [J].
Koskinen, Pekka ;
Malola, Sami ;
Hakkinen, Hannu .
PHYSICAL REVIEW LETTERS, 2008, 101 (11)
[25]   Edge effects on quantum thermal transport in graphene nanoribbons: Tight-binding calculations [J].
Lan, Jinghua ;
Wang, Jian-Sheng ;
Gan, Chee Kwan ;
Chin, Sai Kong .
PHYSICAL REVIEW B, 2009, 79 (11)
[26]   Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J].
Li, Xiaolin ;
Wang, Xinran ;
Zhang, Li ;
Lee, Sangwon ;
Dai, Hongjie .
SCIENCE, 2008, 319 (5867) :1229-1232
[27]   Conductance modeling for graphene nanoribbon (GNR) interconnects [J].
Naeemi, Azad ;
Meindl, James D. .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (05) :428-431
[28]   Edge state in graphene ribbons: Nanometer size effect and edge shape dependence [J].
Nakada, K ;
Fujita, M ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 1996, 54 (24) :17954-17961
[29]   Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering [J].
Nika, D. L. ;
Pokatilov, E. P. ;
Askerov, A. S. ;
Balandin, A. A. .
PHYSICAL REVIEW B, 2009, 79 (15)
[30]   Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite [J].
Nika, D. L. ;
Ghosh, S. ;
Pokatilov, E. P. ;
Balandin, A. A. .
APPLIED PHYSICS LETTERS, 2009, 94 (20)