Engineering Cell Surface Function with DNA Origami

被引:99
作者
Akbari, Ehsan [1 ]
Mollica, Molly Y. [1 ]
Lucas, Christopher R. [1 ]
Bushman, Sarah M. [2 ]
Patton, Randy A. [1 ]
Shahhosseini, Melika [1 ]
Song, Jonathan W. [3 ]
Castro, Carlos E. [4 ]
机构
[1] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Biomed Engn, Columbus, OH 43210 USA
[3] Ohio State Univ, Ctr Comprehens Canc, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
[4] Ohio State Univ, Biophys Grad Program, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
cell surface engineering; DNA nanotechnology; DNA origami; intercellular adhesion; membrane functionalization; MEMBRANE; NANOSTRUCTURES; GROWTH; MECHANISMS; TRANSPORT; LEUKEMIA; CULTURE; SHAPES;
D O I
10.1002/adma.201703632
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A specific and reversible method is reported to engineer cell-membrane function by embedding DNA-origami nanodevices onto the cell surface. Robust membrane functionalization across epithelial, mesenchymal, and nonadherent immune cells is achieved with DNA nanoplatforms that enable functions including the construction of higher-order DNA assemblies at the cell surface and programed cell-cell adhesion between homotypic and heterotypic cells via sequence-specific DNA hybridization. It is anticipated that integration of DNA-origami nanodevices can transform the cell membrane into an engineered material that can mimic, manipulate, and measure biophysical and biochemical function within the plasma membrane of living cells.
引用
收藏
页数:9
相关论文
共 52 条
[1]  
Burns JR, 2016, NAT NANOTECHNOL, V11, P152, DOI [10.1038/NNANO.2015.279, 10.1038/nnano.2015.279]
[2]   Membrane-Spanning DNA Nanopores with Cytotoxic Effect [J].
Burns, Jonathan R. ;
Al-Juffali, Noura ;
Janes, Sam M. ;
Howorka, Stefan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (46) :12466-12470
[3]   A primer to scaffolded DNA origami [J].
Castro, Carlos Ernesto ;
Kilchherr, Fabian ;
Kim, Do-Nyun ;
Shiao, Enrique Lin ;
Wauer, Tobias ;
Wortmann, Philipp ;
Bathe, Mark ;
Dietz, Hendrik .
NATURE METHODS, 2011, 8 (03) :221-229
[4]   CONTINUOUS GROWTH AND DIFFERENTIATION OF HUMAN MYELOID LEUKEMIC-CELLS IN SUSPENSION CULTURE [J].
COLLINS, SJ ;
GALLO, RC ;
GALLAGHER, RE .
NATURE, 1977, 270 (5635) :347-349
[5]   DNA Origami Nanoneedles on Freestanding Lipid Membranes as a Tool To Observe Isotropic-Nematic Transition in Two Dimensions [J].
Czogalla, Aleksander ;
Kauert, Dominik J. ;
Seidel, Ralf ;
Schwille, Petra ;
Petrov, Eugene P. .
NANO LETTERS, 2015, 15 (01) :649-655
[6]   Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures [J].
Debnath, J ;
Muthuswamy, SK ;
Brugge, JS .
METHODS, 2003, 30 (03) :256-268
[7]  
Douglas S. M., 2009, NUCLEIC ACIDS RES, V37
[8]   A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads [J].
Douglas, Shawn M. ;
Bachelet, Ido ;
Church, George M. .
SCIENCE, 2012, 335 (6070) :831-834
[9]   Self-assembly of DNA into nanoscale three-dimensional shapes [J].
Douglas, Shawn M. ;
Dietz, Hendrik ;
Liedl, Tim ;
Hoegberg, Bjoern ;
Graf, Franziska ;
Shih, William M. .
NATURE, 2009, 459 (7245) :414-418
[10]   Uncovering the forces between nucleosomes using DNA origami [J].
Funke, Jonas J. ;
Ketterer, Philip ;
Lieleg, Corinna ;
Schunter, Sarah ;
Korber, Philipp ;
Dietz, Hendrik .
SCIENCE ADVANCES, 2016, 2 (11)