Entanglement in a solid-state spin ensemble

被引:115
作者
Simmons, Stephanie [1 ]
Brown, Richard M. [1 ]
Riemann, Helge [2 ]
Abrosimov, Nikolai V. [2 ]
Becker, Peter [3 ]
Pohl, Hans-Joachim [4 ]
Thewalt, Mike L. W. [5 ]
Itoh, Kohei M. [6 ]
Morton, John J. L. [1 ,7 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Leibniz Inst Kristallzuchtung, D-12489 Berlin, Germany
[3] PTB Braunschweig, D-38116 Braunschweig, Germany
[4] VITCON Projectconsult GmbH, D-07743 Jena, Germany
[5] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
[6] Keio Univ, Sch Fundamental Sci & Technol, Yokohama, Kanagawa 2238522, Japan
[7] Univ Oxford, Clarendon Lab, CAESR, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
QUANTUM; SEPARABILITY; PHASE;
D O I
10.1038/nature09696
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters(1), quantum information processing(2) and the strongest forms of quantum cryptography(3). Spin ensembles, such as those used in liquid-state nuclear magnetic resonance(4,5), have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4 T), low-temperature (2.9 K) electron spin resonance with hyperpolarization of the P-31 nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.
引用
收藏
页码:69 / 72
页数:4
相关论文
共 30 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   Charge state control and relaxation in an atomically doped silicon device [J].
Andresen, Seren E. S. ;
Brenner, Rolf ;
Wellard, Cameron J. ;
Yang, Changyi ;
Hopf, Toby ;
Escott, Christopher C. ;
Clark, Robert G. ;
Dzurak, Andrew S. ;
Jamieson, David N. ;
Hollenberg, Lloyd C. L. .
NANO LETTERS, 2007, 7 (07) :2000-2003
[3]   Preparing high purity initial states for nuclear magnetic resonance quantum computing [J].
Anwar, MS ;
Blazina, D ;
Carteret, HA ;
Duckett, SB ;
Halstead, TK ;
Jones, JA ;
Kozak, CM ;
Taylor, RJK .
PHYSICAL REVIEW LETTERS, 2004, 93 (04) :040501-1
[4]   Enrichment of silicon for a better kilogram [J].
Becker, P. ;
Pohl, H. -J. ;
Riemann, H. ;
Abrosimov, N. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2010, 207 (01) :49-66
[5]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[6]   Distributed quantum-information processing with minimal local resources [J].
Campbell, Earl T. .
PHYSICAL REVIEW A, 2007, 76 (04)
[7]   Entanglement as a precondition for secure quantum key distribution -: art. no. 217903 [J].
Curty, M ;
Lewenstein, M ;
Lütkenhaus, N .
PHYSICAL REVIEW LETTERS, 2004, 92 (21) :217903-1
[8]   Dynamic nuclear polarization of 29Si nuclei in isotopically controlled phosphorus doped silicon [J].
Hayashi, Hiroshi ;
Itahashi, Tatsumasa ;
Itoh, Kohei M. ;
Vlasenko, Leonid S. ;
Vlasenko, Marina P. .
PHYSICAL REVIEW B, 2009, 80 (04)
[9]   Separability of mixed states: Necessary and sufficient conditions [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICS LETTERS A, 1996, 223 (1-2) :1-8
[10]   On the role of entanglement in quantum-computational speed-up [J].
Jozsa, R ;
Linden, N .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2036) :2011-2032