Plasma etch technologies for the development of ultra-small feature size transistor devices

被引:75
作者
Borah, D. [1 ]
Shaw, M. T.
Rasappa, S.
Farrell, R. A.
O'Mahony, C.
Faulkner, C. M.
Bosea, M.
Gleeson, P.
Holmes, J. D.
Morris, M. A.
机构
[1] Univ Coll Cork, Dept Chem, Cork, Ireland
关键词
ELECTRICAL CHARACTERISTICS; SILICON; GATE;
D O I
10.1088/0022-3727/44/17/174012
中图分类号
O59 [应用物理学];
学科分类号
摘要
The advances in information and communication technologies have been largely predicated around the increases in computer processor power derived from the constant miniaturization (and consequent higher density) of individual transistors. Transistor design has been largely unchanged for many years and progress has been around scaling of the basic CMOS device. Scaling has been enabled by photolithography improvements (i.e. patterning) and secondary processing such as deposition, implantation, planarization, etc. Perhaps the most important of the secondary processes is the plasma etch methodology whereby the pattern created by lithography is 'transferred' to the surface via a selective etch to remove exposed material. However, plasma etch technologies face challenges as scaling continues. Maintaining absolute fidelity in pattern transfer at sub-16 nm dimensions will require advances in plasma technology (plasma sources, chamber design, etc) and chemistry (etch gases, flows, interactions with substrates, etc). In this paper, we illustrate some of these challenges by discussing the formation of ultra-small device structures from the directed self-assembly of block copolymers (BCPs) where nanopatterns are formed from the micro-phase separation of the system. The polymer pattern is transferred by a double etch procedure where one block is selectively removed and the remaining block acts as a resist pattern for silicon pattern transfer. Data are presented which shows that highly regular nanowire patterns of feature size below 20 nm can be created using etch optimization techniques and in this paper we demonstrate generation of crystalline silicon nanowire arrays with feature sizes below 8 nm. BCP techniques are demonstrated to be applicable from these ultra-small feature sizes to 40 nm dimensions. Etch profiles show rounding effects because etch selectivity in these nanoscale resist patterns is limited and the resist thickness rather low. The nanoscale nature of the topography generated also places high demands on developing new etch processes.
引用
收藏
页数:12
相关论文
共 40 条
[1]   Cryogenic etching of deep narrow trenches in silicon [J].
Aachboun, S ;
Ranson, P ;
Hilbert, C ;
Boufnichel, M .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 2000, 18 (04) :1848-1852
[2]  
AGARAWAL A, 2008, 61 ANN GAS EL C DALL
[3]   Plasma atomic layer etching using conventional plasma equipment [J].
Agarwal, Ankur ;
Kushner, Mark J. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2009, 27 (01) :37-50
[4]   Nanopatterning with microdomains of block copolymers using reactive-ion etching selectivity [J].
Asakawa, K ;
Hiraoka, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2002, 41 (10) :6112-6118
[5]   Analysis of systematic variation and impact on circuit performance [J].
Banerjee, Shayak ;
Elakkumanan, Praveen ;
Chidambarrao, Dureseti ;
Culp, James ;
Orshansky, Michael .
DESIGN FOR MANUFACTURABILITY THROUGH DESIGN-PROCESS INTEGRATION II, 2008, 6925
[6]  
Bencher C., 2009, P SPIE, V7274, p72740G
[7]  
BONING DS, 1994, PROCEEDINGS OF THE 1994 AMERICAN CONTROL CONFERENCE, VOLS 1-3, P897
[8]   Rapid directed self assembly of lamellar microdomains from a block copolymer containing hybrid [J].
Cheng, Joy Y. ;
Pitera, Jed ;
Park, Oun-Ho ;
Flickner, Myron ;
Ruiz, Ricardo ;
Black, Charles T. ;
Kim, Ho-Cheol .
APPLIED PHYSICS LETTERS, 2007, 91 (14)
[9]  
Doyle B., 2002, Intel Technology Journal, V6, P42
[10]   Facile and controlled synthesis of ultra-thin low dielectric constant meso/microporous silica films [J].
Farrell, Richard A. ;
Petkov, Nikolay ;
Cherkaoui, Karim ;
Amenitsch, Heinz ;
Holmes, Justin D. ;
Hurley, Paul K. ;
Morris, Michael A. .
CHEMPHYSCHEM, 2008, 9 (11) :1524-1527