Research Update: Strategies for improving the stability of perovskite solar cells

被引:129
作者
Habisreutinger, Severin N. [1 ]
McMeekin, David P. [1 ]
Snaith, Henry J. [1 ]
Nicholas, Robin J. [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
来源
APL MATERIALS | 2016年 / 4卷 / 09期
基金
英国工程与自然科学研究理事会;
关键词
HOLE TRANSPORT MATERIALS; HIGH-PERFORMANCE; CH3NH3PBI3; PEROVSKITE; LEAD TRIHALIDE; HALIDE PEROVSKITES; INTERFACIAL LAYER; COLLECTION LAYER; HIGHLY EFFICIENT; BLOCKING LAYER; CONDUCTOR-FREE;
D O I
10.1063/1.4961210
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The power-conversion efficiency of perovskite solar cells has soared up to 22.1% earlier this year. Within merely five years, the perovskite solar cell can now compete on efficiency with inorganic thin-film technologies, making it the most promising of the new, emerging photovoltaic solar cell technologies. The next grand challenge is now the aspect of stability. The hydrophilicity and volatility of the organic methylammonium makes the work-horse material methylammonium lead iodide vulnerable to degradation through humidity and heat. Additionally, ultraviolet radiation and oxygen constitute stressors which can deteriorate the device performance. There are two fundamental strategies to increasing the device stability: developing protective layers around the vulnerable perovskite absorber and developing a more resilient perovskite absorber. The most important reports in literature are summarized and analyzed here, letting us conclude that any long-term stability, on par with that of inorganic thin-film technologies, is only possible with a more resilient perovskite incorporated in a highly protective device design. (C) 2016 Author(s).
引用
收藏
页数:15
相关论文
共 136 条
[11]  
Bryant D, 2016, ENERG ENVIRON SCI, V9, P1655, DOI 10.1039/c6ee00409a
[12]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[13]  
Campeau Z., 2013, SunPower Module Degradation Rate
[14]   2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications [J].
Cao, Duyen H. ;
Stoumpos, Constantinos C. ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (24) :7843-7850
[15]   Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells [J].
Cao, Jing ;
Yin, Jun ;
Yuan, Shangfu ;
Zhao, Yun ;
Li, Jing ;
Zheng, Nanfeng .
NANOSCALE, 2015, 7 (21) :9443-9447
[16]   High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition [J].
Chang, Chih-Yu ;
Lee, Kuan-Ting ;
Huang, Wen-Kuan ;
Siao, Hao-Yi ;
Chang, Yu-Chia .
CHEMISTRY OF MATERIALS, 2015, 27 (14) :5122-5130
[17]   Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact [J].
Chavhan, Sudam ;
Miguel, Oscar ;
Grande, Hans-Jurgen ;
Gonzalez-Pedro, Victoria ;
Sanchez, Rafael S. ;
Barea, Eva M. ;
Mora-Sero, Ivan ;
Tena-Zaera, Ramon .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (32) :12754-12760
[18]   Efficient and reproducible CH3NH3PbI3-x(SCN)x perovskite based planar solar cells [J].
Chen, Yani ;
Li, Bobo ;
Huang, Wei ;
Gao, Deqing ;
Liang, Ziqi .
CHEMICAL COMMUNICATIONS, 2015, 51 (60) :11997-11999
[19]   Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells [J].
Choi, Hyosung ;
Mai, Cheng-Kang ;
Kim, Hak-Beom ;
Jeong, Jaeki ;
Song, Seyeong ;
Bazan, Guillermo C. ;
Kim, Jin Young ;
Heeger, Alan J. .
NATURE COMMUNICATIONS, 2015, 6
[20]   Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air [J].
Christians, Jeffrey A. ;
Miranda Herrera, Pierre A. ;
Kamat, Prashant V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (04) :1530-1538