Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition

被引:742
作者
Kozen, Alexander C. [1 ,2 ]
Lin, Chuan-Fu [1 ,2 ]
Pearse, Alexander J. [1 ,2 ]
Schroeder, Marshall A. [1 ,2 ]
Han, Xiaogang [1 ]
Hu, Liangbing [1 ]
Lee, Sang-Bok [3 ]
Rubloff, Gary W. [1 ,2 ]
Noked, Malachi [1 ,2 ,3 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Chem, College Pk, MD 20742 USA
关键词
atomic layer deposition; solid electrolyte interface; lithium metal anode; lithium protection; lithium-sulfur; SULFUR BATTERY; ION BATTERIES; THIN-FILM; LI; COATINGS; PERFORMANCE; MECHANISMS; PROTECTION; CATHODE; AL2O3;
D O I
10.1021/acsnano.5b02166
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal is considered to be the most promising anode for next-generation batteries due to its high energy density of 3840 mAh g(-1). However, the extreme reactivity of the Li surface can induce parasitic reactions with solvents, contamination, and shuttled active species in the electrolyte, reducing the performance of batteries employing Li metal anodes. One promising solution to this issue is application of thin chemical protection layers to the Li metal surface. Using a custom-made ultrahigh vacuum integrated deposition and characterization system, we demonstrate atomic layer deposition (ALD) of protection layers directly on Li metal with exquisite thickness control. We demonstrate as a proof-of-concept that a 14 nm thick ALD Al2O3 layer can protect the Li surface from corrosion due to atmosphere, sulfur, and electrolyte exposure. Using Li-S battery cells as a test system, we demonstrate an improved capacity retention using ALD-protected anodes over cells assembled with bare Li metal anodes for up to 100 cycles.
引用
收藏
页码:5884 / 5892
页数:9
相关论文
共 41 条
[1]   Al2O3 and TiO2 Atomic Layer Deposition on Copper for Water Corrosion Resistance [J].
Abdulagatov, A. I. ;
Yan, Y. ;
Cooper, J. R. ;
Zhang, Y. ;
Gibbs, Z. M. ;
Cavanagh, A. S. ;
Yang, R. G. ;
Lee, Y. C. ;
George, S. M. .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (12) :4593-4601
[2]   Capacity fade mechanisms and side reactions in lithium-ion batteries [J].
Arora, P ;
White, RE ;
Doyle, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) :3647-3667
[3]   Design of electrolyte solutions for Li and Li-ion batteries: a review [J].
Aurbach, D ;
Talyosef, Y ;
Markovsky, B ;
Markevich, E ;
Zinigrad, E ;
Asraf, L ;
Gnanaraj, JS ;
Kim, HJ .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :247-254
[4]   Evaluating Al2O3 gas diffusion barriers grown directly on Ca films using atomic layer deposition techniques [J].
Bertrand, Jacob A. ;
George, Steven M. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2013, 31 (01)
[5]  
Bieker G., 2015, PHYS CHEM CHEM PHYS, P1
[6]   Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode [J].
Choi, Sung Min ;
Kang, Ik Su ;
Sun, Yang-Kook ;
Song, Jung-Hoon ;
Chung, Seok-Mo ;
Kim, Dong-Won .
JOURNAL OF POWER SOURCES, 2013, 244 :363-368
[7]   Lithium phosphorous oxynitride as a passive layer for anodes in lithium secondary batteries [J].
Chung, K ;
Kim, WS ;
Choi, YK .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 566 (02) :263-267
[8]   PERFORMANCES AND SAFETY BEHAVIOR OF RECHARGEABLE AA-SIZE LI/LIXMNO2 CELL(R) [J].
DAN, P ;
MENGERITSKI, E ;
GERONOV, Y ;
AURBACH, D ;
WEISMAN, I .
JOURNAL OF POWER SOURCES, 1995, 54 (01) :143-145
[9]   Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte [J].
Dudney, NJ .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :176-179
[10]   Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries [J].
Elazari, Ran ;
Salitra, Gregory ;
Garsuch, Arnd ;
Panchenko, Alexander ;
Aurbach, Doron .
ADVANCED MATERIALS, 2011, 23 (47) :5641-+