Posteriori error estimators for the Raviart-Thomas element

被引:127
作者
Braess, D
Verfurth, R
机构
[1] Ruhr-Universitat Bochum, Mathematisches Institut, D-44780 Bochum
关键词
a posteriori error estimation; Raviart-Thomas element; mesh-dependent norms; mixed formulation of the Poisson equation;
D O I
10.1137/S0036142994264079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When error estimators for the Raviart-Thomas element are developed, two difficulties prevent the success of the straightforward application of frequently used arguments. The H(div, Omega)-norm is an anisotropic norm; i.e., it refers to differential operators of different orders. Moreover, the traces of H(div, Omega)-functions are only in H--1/2. Therefore, one does not obtain optimal a posteriori error estimates when using natural norms. This drawback is overcome by using mesh-dependent norms.
引用
收藏
页码:2431 / 2444
页数:14
相关论文
共 17 条
[11]  
Ciarlet PG., 1978, The Finite Element Method for Elliptic Problems
[12]   A convergent adaptive algorithm for Poisson's equation [J].
Dorfler, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1106-1124
[13]   ANALYSIS OF SOME MIXED FINITE-ELEMENT METHODS FOR PLANE ELASTICITY EQUATIONS [J].
PITKARANTA, J ;
STENBERG, R .
MATHEMATICS OF COMPUTATION, 1983, 41 (164) :399-423
[14]  
RAVIART PA, 1977, MATH ASPECTS FINITE, V1, P292
[15]   A-POSTERIORI ERROR ESTIMATION AND ADAPTIVE MESH-REFINEMENT TECHNIQUES [J].
VERFURTH, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 50 (1-3) :67-83
[16]   A POSTERIORI ERROR ESTIMATORS FOR THE STOKES EQUATIONS [J].
VERFURTH, R .
NUMERISCHE MATHEMATIK, 1989, 55 (03) :309-325
[17]  
Verfurth R., 1993, INCOMPUTATIONAL FLUI, P447, DOI [10.1017/CBO9780511574856.015, DOI 10.1017/CBO9780511574856.015]