Millipede -: an AFM data storage system at the frontier of nanotribology

被引:46
作者
Dürig, U
Cross, G
Despont, M
Drechsler, U
Häberle, W
Lutwyche, MI
Rothuizen, H
Stutz, R
Widmer, R
Vettiger, P
Binnig, GK
King, WP
Goodson, KE
机构
[1] IBM Corp, Res, Zurich Res Lab, CH-8803 Ruschlikon, Switzerland
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
关键词
millipede; atomic force microscopy; micromechanics; data storage; light scattering; polymer flow;
D O I
10.1023/A:1018844124754
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The "Millipede" data storage concept is based on the parallel operation of a large number of micromechanical levers that function as AFM sensors. The technique holds promise to evolve into a novel ultrahigh-density, terabit-capacity, and high-data-rate storage technology. Thermomechanical writing and reading in very thin polymer (PMMA) films is used to store and sense 30-40 nm sized bits of similar pitch size, resulting in 400-500 Gbit/in(2) storage densities. High data rates are achieved by operating very large arrays (32 x 32) of AFM sensors in parallel. Batch-fabrication of 32 x 32 AFM cantilever array chips has been achieved, and array reading and writing have been demonstrated. An important consideration for the Millipede storage project is the polymer dynamics on the size scale of one bit. Scaling of rheological parameters measured for macroscopic polymer samples is likely to be incorrect due to the finite length of the underlying molecular polymer chain, a size that is comparable to the bit itself. In order to shed light on these issues we performed lifetime studies of regular arrays of nanometer size patterns using light-scattering techniques.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 14 条
[1]   Ultrahigh-density atomic force microscopy data storage with erase capability [J].
Binnig, G ;
Despont, M ;
Drechsler, U ;
Häberle, W ;
Lutwyche, M ;
Vettiger, P ;
Mamin, HJ ;
Chui, BW ;
Kenny, TW .
APPLIED PHYSICS LETTERS, 1999, 74 (09) :1329-1331
[2]   Low-stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope [J].
Chui, BW ;
Stowe, TD ;
Kenny, TW ;
Mamin, HJ ;
Terris, BD ;
Rugar, D .
APPLIED PHYSICS LETTERS, 1996, 69 (18) :2767-2769
[3]   Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage [J].
Chui, BW ;
Stowe, TD ;
Ju, YS ;
Goodson, KE ;
Kenny, TW ;
Mamin, HJ ;
Terris, BD ;
Ried, RP ;
Rugar, D .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1998, 7 (01) :69-78
[4]   VLSI-NEMS chip for AFM data storage [J].
Despont, M ;
Brugger, J ;
Drechsler, U ;
Dürig, U ;
Häberle, W ;
Lutwyche, M ;
Rothuizen, H ;
Stutz, R ;
Widmer, R ;
Rohrer, H ;
Binnig, G ;
Vettiger, P .
MEMS '99: TWELFTH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 1999, :564-569
[5]   Future trends in hard disk drives [J].
Grochowski, Edward ;
Hoyt, Roger F. .
IEEE Transactions on Magnetics, 1996, 32 (3 /2) :1850-1854
[6]  
KING WP, 1999, MICROELECTROMECHANIC, V1, P583
[7]  
KING WP, 2000, P 2000 SOL STAT SENS
[8]  
Lutwyche M, 1999, ELEC SOC S, V98, P423
[9]  
LUTWYCHE MI, 2000, IEEE INT SOL STAT CI, P802
[10]  
MACDONALD NC, 1993, 7 INT C SOL STAT SEN, P8