Subspace confinement: how good is your qubit?

被引:15
作者
Devitt, Simon J.
Schirmer, Sonia G.
Oi, Daniel K. L.
Cole, Jared H.
Hollenberg, Lloyd C. L.
机构
[1] Univ Cambridge, Ctr Quantum Computat, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Univ Melbourne, Ctr Quantum Comp Technol, Dept Phys, Parkville, Vic 3052, Australia
[3] Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 0NG, Lanark, Scotland
来源
NEW JOURNAL OF PHYSICS | 2007年 / 9卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/1367-2630/9/10/384
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The basic operating element of standard quantum computation is the qubit, an isolated two-level system that can be accurately controlled, initialized and measured. However, the majority of proposed physical architectures for quantum computation are built from systems that contain much more complicated Hilbert space structures. Hence, defining a qubit requires the identification of an appropriate controllable two-dimensional sub-system. This prompts the obvious question of how well a qubit, thus defined, is confined to this subspace, and whether we can experimentally quantify the potential leakage into states outside the qubit subspace. We demonstrate how subspace leakage can be characterized using minimal theoretical assumptions by examining the Fourier spectrum of the oscillation experiment.
引用
收藏
页数:22
相关论文
共 32 条
[1]   Radio-frequency single-electron transistor as readout device for qubits: Charge sensitivity and backaction [J].
Aassime, A ;
Johansson, G ;
Wendin, G ;
Schoelkopf, RJ ;
Delsing, P .
PHYSICAL REVIEW LETTERS, 2001, 86 (15) :3376-3379
[2]  
Aliferis P, 2007, QUANTUM INF COMPUT, V7, P139
[3]   Tunable coupling of superconducting qubits [J].
Blais, A ;
van den Brink, AM ;
Zagoskin, AM .
PHYSICAL REVIEW LETTERS, 2003, 90 (12) :4
[4]  
Bracewell R. N., 2000, FOURIER TRANSFORM IT
[5]   Universal leakage elimination [J].
Byrd, MS ;
Lidar, DA ;
Wu, LA ;
Zanardi, P .
PHYSICAL REVIEW A, 2005, 71 (05)
[6]   QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS [J].
CIRAC, JI ;
ZOLLER, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4091-4094
[7]   QUANTUM-MECHANICS OF A MACROSCOPIC VARIABLE - THE PHASE DIFFERENCE OF A JOSEPHSON JUNCTION [J].
CLARKE, J ;
CLELAND, AN ;
DEVORET, MH ;
ESTEVE, D ;
MARTINIS, JM .
SCIENCE, 1988, 239 (4843) :992-997
[8]   Identifying a two-state Hamiltonian in the presence of decoherence [J].
Cole, Jared H. ;
Greentree, Andrew D. ;
Oi, Daniel K. L. ;
Schirmer, Sonia G. ;
Wellard, Cameron J. ;
Hollenberg, Lloyd C. L. .
PHYSICAL REVIEW A, 2006, 73 (06)
[9]   Precision characterization of two-qubit Hamiltonians via entanglement mapping [J].
Cole, Jared H. ;
Devitt, Simon J. ;
Hollenberg, Lloyd C. L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (47) :14649-14658
[10]   Identifying an experimental two-state Hamiltonian to arbitrary accuracy [J].
Cole, JH ;
Schirmer, SG ;
Greentree, AD ;
Wellard, CJ ;
Oi, DKL ;
Hollenberg, LCL .
PHYSICAL REVIEW A, 2005, 71 (06)