Imperfection effects for multiple applications of the quantum wavelet transform

被引:23
作者
Terraneo, M [1 ]
Shepelyansky, DL [1 ]
机构
[1] Univ Toulouse 3, CNRS, UMR 5626, Phys Quant Lab, F-31062 Toulouse 4, France
关键词
D O I
10.1103/PhysRevLett.90.257902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study analytically and numerically the effects of various imperfections in a quantum computation of a simple dynamical model based on the quantum wavelet transform. The results for fidelity time scales, obtained for a large range of error amplitudes and number of qubits, imply that for static imperfections the threshold for fault-tolerant quantum computation is decreased by a few orders of magnitude compared to the case of random errors.
引用
收藏
页数:4
相关论文
共 28 条
[11]   Time dynamics in chaotic many-body systems: Can chaos destroy a quantum computer? [J].
Flambaum, VV .
AUSTRALIAN JOURNAL OF PHYSICS, 2000, 53 (04) :489-497
[12]   Emergence of quantum chaos in the quantum computes core and how to manage it [J].
Georgeot, B ;
Shepelyansky, DL .
PHYSICAL REVIEW E, 2000, 62 (05) :6366-6375
[13]   Stable quantum computation of unstable classical chaos [J].
Georgeot, B ;
Shepelyansky, DL .
PHYSICAL REVIEW LETTERS, 2001, 86 (23) :5393-5396
[14]   Quantum chaos border for quantum computing [J].
Georgeot, B ;
Shepelyansky, DL .
PHYSICAL REVIEW E, 2000, 62 (03) :3504-3507
[15]  
GOTTESMAN D, COMMUNICATION
[16]  
HOYER P, QUANTPH9702028
[17]  
KLAPPENECKER A, 1999, SPIE P, P703
[18]  
Meyer Y., 1993, WAVELETS ALGORITHMS
[19]   Quantum computation with phase drift errors [J].
Miquel, C ;
Paz, JP ;
Zurek, WH .
PHYSICAL REVIEW LETTERS, 1997, 78 (20) :3971-3974
[20]   Transition from localized to extended eigenstates in the ensemble of power-law random banded matrices [J].
Mirlin, AD ;
Fyodorov, YV ;
Dittes, FM ;
Quezada, J ;
Seligman, TH .
PHYSICAL REVIEW E, 1996, 54 (04) :3221-3230