Capturing inter-subject variability with group independent component analysis of fMRI data: A simulation study

被引:179
作者
Allen, Elena A. [1 ]
Erhardt, Erik B. [1 ,2 ]
Wei, Yonghua [2 ]
Eichele, Tom [3 ,4 ]
Calhoun, Vince D. [1 ,5 ]
机构
[1] Mind Res Network, Albuquerque, NM 87106 USA
[2] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[3] Univ Bergen, Dept Biol & Med Psychol, Bergen, Norway
[4] Haukeland Hosp, Dept Neurol, N-5021 Bergen, Norway
[5] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
基金
美国国家科学基金会;
关键词
fMRI; Inter-subject variability; Group ICA; Multi-subject; Model order; Simulations; FUNCTIONAL MRI DATA; INTERINDIVIDUAL VARIABILITY; SPATIAL NORMALIZATION; ACTIVATION; ICA; INFORMATION; NETWORKS; MODEL; DIMENSIONALITY; CONNECTIVITY;
D O I
10.1016/j.neuroimage.2011.10.010
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A key challenge in functional neuroimaging is the meaningful combination of results across subjects. Even in a sample of healthy participants, brain morphology and functional organization exhibit considerable variability, such that no two individuals have the same neural activation at the same location in response to the same stimulus. This inter-subject variability limits inferences at the group-level as average activation patterns may fail to represent the patterns seen in individuals. A promising approach to multi-subject analysis is group independent component analysis (GICA), which identifies group components and reconstructs activations at the individual level. GICA has gained considerable popularity, particularly in studies where temporal response models cannot be specified. However, a comprehensive understanding of the performance of GICA under realistic conditions of inter-subject variability is lacking. In this study we use simulated functional magnetic resonance imaging (fMRI) data to determine the capabilities and limitations of GICA under conditions of spatial, temporal, and amplitude variability. Simulations, generated with the SimTB toolbox, address questions that commonly arise in GICA studies, such as: (1) How well can individual subject activations be estimated and when will spatial variability preclude estimation? (2) Why does component splitting occur and how is it affected by model order? (3) How should we analyze component features to maximize sensitivity to intersubject differences? Overall, our results indicate an excellent capability of GICA to capture between-subject differences and we make a number of recommendations regarding analytic choices for application to functional imaging data. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:4141 / 4159
页数:19
相关论文
共 60 条
[41]   Effects of spatial smoothing on fMRI group inferences [J].
Mikl, Michal ;
Marecek, Radek ;
Hlustik, Petr ;
Pavlicova, Martina ;
Drastich, Ales ;
Chlebus, Pavel ;
Brazdil, Milan ;
Krupa, Petr .
MAGNETIC RESONANCE IMAGING, 2008, 26 (04) :490-503
[42]   Joint independent component analysis for simultaneous EEG-fMRI: Principle and simulation [J].
Moosmann, Matthias ;
Eichele, Tom ;
Nordby, Helge ;
Hugdahl, Kenneth ;
Calhoun, Vince D. .
INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2008, 67 (03) :212-221
[43]  
Ono M, 1990, ATLAS CEREBRAL SULCI
[44]   Information-based modeling of event-related brain dynamics [J].
Onton, Julie ;
Makeig, Scott .
EVENT-RELATED DYNAMICS OF BRAIN OSCILLATIONS, 2006, 159 :99-120
[45]   TOPOGRAPHICAL VARIATION OF THE HUMAN PRIMARY CORTICES - IMPLICATIONS FOR NEUROIMAGING, BRAIN MAPPING, AND NEUROBIOLOGY [J].
RADEMACHER, J ;
CAVINESS, VS ;
STEINMETZ, H ;
GALABURDA, AM .
CEREBRAL CORTEX, 1993, 3 (04) :313-329
[46]   Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data [J].
Schmithorst, VJ ;
Holland, SK .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2004, 19 (03) :365-368
[47]   Fully exploratory network ICA (FENICA) on resting-state fMRI data [J].
Schoepf, V. ;
Kasess, C. H. ;
Lanzenberger, R. ;
Fischmeister, F. ;
Windischberger, C. ;
Moser, E. .
JOURNAL OF NEUROSCIENCE METHODS, 2010, 192 (02) :207-213
[48]   Correspondence of the brain's functional architecture during activation and rest [J].
Smith, Stephen M. ;
Fox, Peter T. ;
Miller, Karla L. ;
Glahn, David C. ;
Fox, P. Mickle ;
Mackay, Clare E. ;
Filippini, Nicola ;
Watkins, Kate E. ;
Toro, Roberto ;
Laird, Angela R. ;
Beckmann, Christian F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (31) :13040-13045
[49]   ICA of fMRI group study data [J].
Svensén, M ;
Kruggel, F ;
Benali, H .
NEUROIMAGE, 2002, 16 (03) :551-563
[50]   Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRl datasets [J].
Thirion, Bertrand ;
Flandin, Guillaume ;
Pinel, Philippe ;
Roche, Alexis ;
Ciuciu, Philippe ;
Poline, Jean-Baptiste .
HUMAN BRAIN MAPPING, 2006, 27 (08) :678-693