Genome-Wide Binding Site Analysis of FAR-RED ELONGATED HYPOCOTYL3 Reveals Its Novel Function in Arabidopsis Development

被引:126
作者
Ouyang, Xinhao [1 ,2 ,3 ]
Li, Jigang [1 ,2 ]
Li, Gang [1 ]
Li, Bosheng [1 ]
Chen, Beibei [1 ]
Shen, Huaishun [1 ]
Huang, Xi [1 ]
Mo, Xiaorong [1 ]
Wan, Xiangyuan
Lin, Rongcheng [5 ]
Li, Shigui [3 ]
Wang, Haiyang [1 ,4 ]
Deng, Xing Wang [1 ,2 ,4 ]
机构
[1] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[2] Peking Univ, Peking Yale Joint Ctr Plant Mol Genet & Agrobiot, Natl Lab Prot Engn & Plant Genet Engn, Coll Life Sci, Beijing 100871, Peoples R China
[3] Sichuan Agr Univ, Rice Res Inst, Chengdu 611130, Sichuan, Peoples R China
[4] Natl Engn Res Ctr Crop Mol Design, Beijing 100085, Peoples R China
[5] Chinese Acad Sci, Key Lab Photobiol, Inst Bot, Beijing 100093, Peoples R China
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PHYTOCHROME-A PHOTORECEPTOR; DISRUPTS CIRCADIAN-RHYTHMS; ART; NO; 25; CHLOROPLAST DIVISION; TRANSCRIPTION FACTORS; NUCLEAR ACCUMULATION; SIGNAL-TRANSDUCTION; CELL ELONGATION; GENE-EXPRESSION; LIGHT;
D O I
10.1105/tpc.111.085126
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1), two transposase-derived transcription factors, are key components in phytochrome A signaling and the circadian clock. Here, we use chromatin immunoprecipitation-based sequencing (ChIP-seq) to identify 1559 and 1009 FHY3 direct target genes in darkness (D) and far-red (FR) light conditions, respectively, in the Arabidopsis thaliana genome. FHY3 preferentially binds to promoters through the FHY3/FAR1 binding motif (CACGCGC). Interestingly, FHY3 also binds to two motifs in the 178-bp Arabidopsis centromeric repeats. Comparison between the ChIP-seq and microarray data indicates that FHY3 quickly regulates the expression of 197 and 86 genes in D and FR, respectively. FHY3 also coregulates a number of common target genes with PHYTOCHROME INTERACTING FACTOR 3-LIKE5 and ELONGATED HYPOCOTYL5. Moreover, we uncover a role for FHY3 in controlling chloroplast development by directly activating the expression of ACCUMULATION AND REPLICATION OF CHLOROPLASTS5, whose product is a structural component of the latter stages of chloroplast division in Arabidopsis. Taken together, our data suggest that FHY3 regulates multiple facets of plant development, thus providing insights into its functions beyond light and circadian pathways.
引用
收藏
页码:2514 / 2535
页数:22
相关论文
共 75 条
[21]   The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway [J].
Hudson, ME ;
Lisch, DR ;
Quail, PH .
PLANT JOURNAL, 2003, 34 (04) :453-471
[22]   PHYTOCHROME-INTERACTING FACTOR 1 is a critical bHLH regulator of chlorophyll biosynthesis [J].
Huq, E ;
Al-Sady, B ;
Hudson, M ;
Kim, CH ;
Apel, M ;
Quail, PH .
SCIENCE, 2004, 305 (5692) :1937-1941
[23]   Exploration, normalization, and summaries of high density oligonucleotide array probe level data [J].
Irizarry, RA ;
Hobbs, B ;
Collin, F ;
Beazer-Barclay, YD ;
Antonellis, KJ ;
Scherf, U ;
Speed, TP .
BIOSTATISTICS, 2003, 4 (02) :249-264
[24]   Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets [J].
Johnson, David S. ;
Li, Wei ;
Gordon, D. Benjamin ;
Bhattacharjee, Arindam ;
Curry, Bo ;
Ghosh, Jayati ;
Brizuela, Leonardo ;
Carroll, Jason S. ;
Brown, Myles ;
Flicek, Paul ;
Koch, Christoph M. ;
Dunham, Ian ;
Bieda, Mark ;
Xu, Xiaoqin ;
Farnham, Peggy J. ;
Kapranov, Philipp ;
Nix, David A. ;
Gingeras, Thomas R. ;
Zhang, Xinmin ;
Holster, Heather ;
Jiang, Nan ;
Green, Roland D. ;
Song, Jun S. ;
Mccuine, Scott A. ;
Anton, Elizabeth ;
Nguyen, Loan ;
Trinklein, Nathan D. ;
Ye, Zhen ;
Ching, Keith ;
Hawkins, David ;
Ren, Bing ;
Scacheri, Peter C. ;
Rozowsky, Joel ;
Karpikov, Alexander ;
Euskirchen, Ghia ;
Weissman, Sherman ;
Gerstein, Mark ;
Snyder, Michael ;
Yang, Annie ;
Moqtaderi, Zarmik ;
Hirsch, Heather ;
Shulha, Hennady P. ;
Fu, Yutao ;
Weng, Zhiping ;
Struhl, Kevin ;
Myers, Richard M. ;
Lieb, Jason D. ;
Liu, X. Shirley .
GENOME RESEARCH, 2008, 18 (03) :393-403
[25]   Structure and genomic organization of centromeric repeats in Arabidopsis species [J].
Kawabe, A ;
Nasuda, S .
MOLECULAR GENETICS AND GENOMICS, 2005, 272 (06) :593-602
[26]   Centromere locations and associated chromosome rearrangements in Arabidopsis lyrata and A-thaliana [J].
Kawabe, Akira ;
Hansson, Bengt ;
Hagenblad, Jenny ;
Forrest, Alan ;
Charlesworth, Deborah .
GENETICS, 2006, 173 (03) :1613-1619
[27]   A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments [J].
Laajala, Teemu D. ;
Raghav, Sunil ;
Tuomela, Soile ;
Lahesmaa, Riitta ;
Aittokallio, Tero ;
Elo, Laura L. .
BMC GENOMICS, 2009, 10
[28]   Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development [J].
Lee, Jungeun ;
He, Kun ;
Stolc, Viktor ;
Lee, Horim ;
Figueroa, Pablo ;
Gao, Ying ;
Tongprasit, Waraporn ;
Zhao, Hongyu ;
Lee, Ilha ;
Deng, XingWang .
PLANT CELL, 2007, 19 (03) :731-749
[29]   Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis [J].
Li, Gang ;
Siddiqui, Hamad ;
Teng, Yibo ;
Lin, Rongcheng ;
Wan, Xiang-yuan ;
Li, Jigang ;
Lau, On-Sun ;
Ouyang, Xinhao ;
Dai, Mingqiu ;
Wan, Jianmin ;
Devlin, Paul F. ;
Deng, Xing Wang ;
Wang, Haiyang .
NATURE CELL BIOLOGY, 2011, 13 (05) :616-U275
[30]   Mapping short DNA sequencing reads and calling variants using mapping quality scores [J].
Li, Heng ;
Ruan, Jue ;
Durbin, Richard .
GENOME RESEARCH, 2008, 18 (11) :1851-1858