Homology-based annotation yields 1,042 new candidate genes in the Drosophila melanogaster genome

被引:47
作者
Gopal, S
Schroeder, M
Pieper, U
Sczyrba, A
Aytekin-Kurban, G
Bekiranov, S
Fajardo, JE
Eswar, N
Sanchez, R
Sali, A
Gaasterland, T
机构
[1] Rockefeller Univ, Lab Computat Genom, New York, NY 10021 USA
[2] Rockefeller Univ, Dept Biophys, New York, NY 10021 USA
关键词
D O I
10.1038/85922
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The approach to annotating a genome critically affects the number acid accuracy of genes identified in the genome sequence. Genome annotation based on stringent gene identification is prone to underestimate the complement of genes encoded in a genome. In contrast, over-prediction of putative genes followed by exhaustive computational sequence, motif and structural homology search will find rarely expressed, possibly unique, new genes at the risk of including non-functional genes. We developed a two-stage approach that combines the merits of stringent genome annotation with the benefits of over-prediction. First we identify plausible genes regardless of matches with EST, cDNA or protein sequences from the organism (stage 1). In the second stage, proteins predicted from the plausible genes are compared at the protein level with EST. cDNA and protein sequences, and protein structures from other organisms (stage 2). Remote but biologically meaningful protein sequence or structure homologies provide supporting evidence for genuine genes. The method, applied to the Drosophila melanogaster genome, validated 1,042 novel candidate genes after filtering 19,410 plausible genes, of which 12,124 matched the original 13,601 annotated genes(1). This annotation strategy is applicable to genomes of all organisms, including human.
引用
收藏
页码:337 / 340
页数:4
相关论文
共 26 条
  • [11] The complete genome of the hyperthermophilic bacterium Aquifex aeolicus
    Deckert, G
    Warren, PV
    Gaasterland, T
    Young, WG
    Lenox, AL
    Graham, DE
    Overbeek, R
    Snead, MA
    Keller, M
    Aujay, M
    Huber, R
    Feldman, RA
    Short, JM
    Olsen, GJ
    Swanson, RV
    [J]. NATURE, 1998, 392 (6674) : 353 - 358
  • [12] MAGPIE/EGRET annotation of the 2.9-Mb Drosophila melanogaster Adh region
    Gaasterland, T
    Sczyrba, A
    Thomas, E
    Aytekin-Kurban, G
    Gordon, P
    Sensen, CW
    [J]. GENOME RESEARCH, 2000, 10 (04) : 502 - 510
  • [13] Gaasterland T, 1998, Microb Comp Genomics, V3, P177, DOI 10.1089/omi.1.1998.3.177
  • [14] New features of the blocks database servers
    Henikoff, JG
    Henikoff, S
    Pietrokovski, S
    [J]. NUCLEIC ACIDS RESEARCH, 1999, 27 (01) : 226 - 228
  • [15] The PROSITE database, its status in 1999
    Hofmann, K
    Bucher, P
    Falquet, L
    Bairoch, A
    [J]. NUCLEIC ACIDS RESEARCH, 1999, 27 (01) : 215 - 219
  • [16] Comparative protein structure modeling of genes and genomes
    Martí-Renom, MA
    Stuart, AC
    Fiser, A
    Sánchez, R
    Melo, F
    Sali, A
    [J]. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2000, 29 : 291 - 325
  • [17] Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in C-elegans
    Reboul, J
    Vaglio, P
    Tzellas, N
    Thierry-Mieg, N
    Moore, T
    Jackson, C
    Shin-i, T
    Kohara, Y
    Thierry-Mieg, D
    Thierry-Mieg, J
    Lee, H
    Hitti, J
    Doucette-Stamm, L
    Hartley, JL
    Temple, GF
    Brasch, MA
    Vandenhaute, J
    Lamesch, PE
    Hill, DE
    Vidal, M
    [J]. NATURE GENETICS, 2001, 27 (03) : 332 - 336
  • [18] Genome annotation assessment in Drosophila melanogaster
    Reese, MG
    Hartzell, G
    Harris, NL
    Ohler, U
    Abril, JF
    Lewis, SE
    [J]. GENOME RESEARCH, 2000, 10 (04) : 483 - 501
  • [19] Genie -: Gene finding in Drosophila melanogaster
    Reese, MG
    Kulp, D
    Tammana, H
    Haussler, D
    [J]. GENOME RESEARCH, 2000, 10 (04) : 529 - 538
  • [20] A Drosophila complementary DNA resource
    Rubin, GM
    Hong, L
    Brokstein, P
    Evans-Holm, M
    Frise, E
    Stapleton, M
    Harvey, DA
    [J]. SCIENCE, 2000, 287 (5461) : 2222 - 2224