ATRP in the design of functional materials for biomedical applications

被引:503
作者
Siegwart, Daniel J. [3 ,4 ]
Oh, Jung Kwon [2 ]
Matyjaszewski, Krzysztof [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA
[2] Concordia Univ, Dept Chem & Biochem, Montreal, PQ H4B 1R6, Canada
[3] MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[4] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Atom Transfer Radical Polymerization (ATRP); Drug delivery; Biomedical engineering; Biomaterials; Imaging; Nanoparticles; Nanogels; Tissue engineering; Bioconjugation; Polymeric micelles; Polymer grafting; Functionality; Block copolymers; Bioactive surfaces; TRANSFER RADICAL POLYMERIZATION; RING-OPENING POLYMERIZATION; BLOCK-COPOLYMER MICELLES; IRON-OXIDE NANOPARTICLES; TEMPERATURE-RESPONSIVE HYDROGELS; AQUEOUS-SOLUTION PROPERTIES; WELL-DEFINED GLYCOPOLYMER; FREE CLICK CHEMISTRY; IN-SITU GROWTH; DRUG-DELIVERY;
D O I
10.1016/j.progpolymsci.2011.08.001
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Atom Transfer Radical Polymerization (ATRP) is an effective technique for the design and preparation of multifunctional, nanostructured materials for a variety of applications in biology and medicine. ATRP enables precise control over macromolecular structure, order, and functionality, which are important considerations for emerging biomedical designs. This article reviews recent advances in the preparation of polymer-based nanomaterials using ATRP, including polymer bioconjugates, block copolymer-based drug delivery systems, cross-linked microgels/nanogels, diagnostic and imaging platforms, tissue engineering hydrogels, and degradable polymers. It is envisioned that precise engineering at the molecular level will translate to tailored macroscopic physical properties, thus enabling control of the key elements for realized biomedical applications. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:18 / 37
页数:20
相关论文
共 293 条
[1]  
ABUCHOWSKI A, 1977, J BIOL CHEM, V252, P3582
[2]   FUNCTIONAL POLYMERS .38. SYNTHETIC-POLYMERS AS DRUGS [J].
ALBERTSSON, AC ;
DONARUMA, LG ;
VOGL, O .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1985, 446 :105-115
[3]   Responsive polymers at the biology/materials science interface [J].
Alexander, Cameron ;
Shakesheff, Kevin M. .
ADVANCED MATERIALS, 2006, 18 (24) :3321-3328
[4]   Materials science - Smart biomaterials [J].
Anderson, DG ;
Burdick, JA ;
Langer, R .
SCIENCE, 2004, 305 (5692) :1923-1924
[5]   Covalently incorporated protein-nanogels using AGET ATRP in an inverse miniemulsion [J].
Averick, Saadyah E. ;
Magenau, Andrew J. D. ;
Simakova, Antonina ;
Woodman, Bradley F. ;
Seong, Andrew ;
Mehl, Ryan A. ;
Matyjaszewski, Krzysztof .
POLYMER CHEMISTRY, 2011, 2 (07) :1476-1478
[6]   Elastin-based side-chain polymers synthesized by ATRP [J].
Ayres, L ;
Vos, MRJ ;
Adams, PJHM ;
Shklyarevskiy, IO ;
van Hest, JCM .
MACROMOLECULES, 2003, 36 (16) :5967-5973
[7]  
Babin J.PelletierM, 2009, ANGEW CHEM INT EDIT, V48, pS/1
[8]   Sequence control in polymer synthesis [J].
Badi, Nezha ;
Lutz, Jean-Francois .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (12) :3383-3390
[9]   Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change [J].
Bae, Y ;
Fukushima, S ;
Harada, A ;
Kataoka, K .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (38) :4640-4643
[10]   FREE-RADICAL RING-OPENING POLYMERIZATION OF 4,7-DIMETHYL-2-METHYLENE-1,3-DIOXEPANE AND "5,6-BENZO-2-METHYLENE-1,3-DIOXEPANE [J].
BAILEY, WJ ;
NI, Z ;
WU, SR .
MACROMOLECULES, 1982, 15 (03) :711-714