Controlling false positive rates in mass-multivariate tests for electromagnetic responses

被引:20
作者
Barnes, Gareth R. [1 ]
Litvak, Vladimir [1 ]
Brookes, Matt J. [2 ]
Friston, Karl J. [1 ]
机构
[1] UCL, Inst Neurol, Wellcome Trust Ctr Neuroimaging, London WC1N 3BG, England
[2] Univ Nottingham, Sch Phys & Astron, Sir Peter Mansfield Magnet Resonance Ctr, Nottingham NG7 2RD, England
基金
英国惠康基金;
关键词
UNION INTERSECTION TESTS; TASK-RELATED CHANGES; MEG DATA; CORTICAL SYNCHRONIZATION; SOURCE RECONSTRUCTION; STATISTICAL-ANALYSIS; INVERSE PROBLEM; VISUAL-CORTEX; BRAIN; FIELD;
D O I
10.1016/j.neuroimage.2011.02.072
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We address the problem of controlling false positive rates in mass-multivariate tests for electromagnetic responses in compact regions of source space. We show that mass-univariate thresholds based on sensor level multivariate thresholds (approximated using Roy's union-intersection principle) are unduly conservative. We then consider a Bonferroni correction for source level tests based on the number of unique lead-field extrema. For a given source space, the sensor indices corresponding to the maxima and minima (for each dipolar lead field) are listed, and the number of unique extrema is given by the number of unique pairs in this list. Using a multivariate beamformer formulation, we validate this heuristic against empirical permutation thresholds for mass-univariate and mass-multivariate tests (of induced and evoked responses) for a variety of source spaces, using simulated and real data. We also show that the same approximations hold when dealing with a cortical manifold (rather than a volume) and for mass-multivariate minimum norm solutions. We demonstrate that the mass-multivariate framework is not restricted to tests on a single contrast of effects (cf, Roy's maximum root) but also accommodates multivariate effects (cf. Wilk's lambda). (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1072 / 1081
页数:10
相关论文
共 32 条
[11]   Bayesian decoding of brain images [J].
Friston, Karl J. ;
Chu, Carlton ;
Mourao-Miranda, Janaina ;
Hulme, Oliver ;
Rees, Geraint ;
Penny, Will ;
Ashburner, John .
NEUROIMAGE, 2008, 39 (01) :181-205
[12]   Multiple sparse priors for the M/EEG inverse problem [J].
Friston, Karl J. ;
Harrison, Lee ;
Daunizeau, Jean ;
Kiebel, Stefan ;
Phillips, Christophe ;
Trujillo-Barreto, Nelson ;
Henson, Richard ;
Flandin, Guillaume ;
Mattout, Jeremie .
NEUROIMAGE, 2008, 39 (03) :1104-1120
[13]   A multivariate analysis of evoked responses in EEG and MEG data [J].
Friston, KJ ;
Stephan, KM ;
Heather, JD ;
Frith, CD ;
Ioannides, AA ;
Liu, LC ;
Rugg, MD ;
Vieth, J ;
Keber, H ;
Hunter, K ;
Frackowiak, RSJ .
NEUROIMAGE, 1996, 3 (03) :167-174
[14]   Theta-Coupled Periodic Replay in Working Memory [J].
Fuentemilla, Lluis ;
Penny, Will D. ;
Cashdollar, Nathan ;
Bunzeck, Nico ;
Duzel, Emrah .
CURRENT BIOLOGY, 2010, 20 (07) :606-612
[15]   A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG [J].
Huang, MX ;
Mosher, JC ;
Leahy, RM .
PHYSICS IN MEDICINE AND BIOLOGY, 1999, 44 (02) :423-440
[16]   Statistical parametric mapping for event-related potentials: I. Generic considerations [J].
Kiebel, SJ ;
Friston, KJ .
NEUROIMAGE, 2004, 22 (02) :492-502
[17]   Electromagnetic source reconstruction for group studies [J].
Litvak, Vladimir ;
Friston, Karl J. .
NEUROIMAGE, 2008, 42 (04) :1490-1498
[18]  
Mattout Jeremie, 2007, Comput Intell Neurosci, P67613, DOI 10.1155/2007/67613
[19]   The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors [J].
Nolte, G .
PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (22) :3637-3652
[20]   A comparison of random field theory and permutation methods for the statistical analysis of MEG data [J].
Pantazis, D ;
Nichols, TE ;
Baillet, S ;
Leahy, RM .
NEUROIMAGE, 2005, 25 (02) :383-394