Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror

被引:124
作者
Qi, B
Himmer, AP
Gordon, LM
Yang, XDV
Dickensheets, LD
Vitkin, IA
机构
[1] Univ Toronto, Hlth Network, Ontario Canc Inst, Toronto, ON M5G 2M9, Canada
[2] Montana State Univ, Dept Elect & Comp Engn, Bozeman, MT 59717 USA
[3] Univ Toronto, Dept Med Biophys, Toronto, ON M5G 2M9, Canada
[4] Univ Toronto, Dept Radiat Oncol, Toronto, ON M5G 2M9, Canada
基金
美国国家航空航天局; 加拿大健康研究院; 加拿大创新基金会;
关键词
optical coherence tomography; microelectromechanical systems; dynamic focus control;
D O I
10.1016/j.optcom.2004.01.015
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In high-resolution optical coherence tomography (OCT), a high numerical aperture sample lens is required to achieve high lateral resolution. This situation leads to a limited depth of focus, which can yield sub-optimal lateral resolution outside the focal zone for deep-imaging OCT systems. To maintain high transverse resolution over the entire depth scan, we designed a high-speed dynamic focus control system based on a microelectromechanical mirror. The silicon nitride deformable mirror shifted the focus of the sample beam of the OCT interferometer in synchrony with the coherence-gate scan in the reference arm. As a result, the coherence gate remained at the beam focus during the whole imaging process. The prototype focus control setup was integrated into a high-speed (8 kHz depth scan frequency) OCT system. Improvement to the image quality was demonstrated with a standard resolution target. (C) 2004 Published by Elsevier B.V.
引用
收藏
页码:123 / 128
页数:6
相关论文
共 15 条
[1]   Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media [J].
Chen, ZP ;
Milner, TE ;
Dave, D ;
Nelson, JS .
OPTICS LETTERS, 1997, 22 (01) :64-66
[2]   High-resolution optical coherence tomography over a large depth range with an axicon lens [J].
Ding, ZH ;
Ren, HW ;
Zhao, YH ;
Nelson, JS ;
Chen, ZP .
OPTICS LETTERS, 2002, 27 (04) :243-245
[3]   In vivo ultrahigh-resolution optical coherence tomography [J].
Drexler, W ;
Morgner, U ;
Kärtner, FX ;
Pitris, C ;
Boppart, SA ;
Li, XD ;
Ippen, EP ;
Fujimoto, JG .
OPTICS LETTERS, 1999, 24 (17) :1221-1223
[4]   Optical coherence tomography for ultrahigh resolution in vivo imaging [J].
Fujimoto, JG .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1361-1367
[5]   Micromachined silicon nitride deformable mirrors for focus control [J].
Himmer, PA ;
Dickensheets, DL ;
Friholm, RA .
OPTICS LETTERS, 2001, 26 (16) :1280-1282
[6]  
HIMMER PA, 2003, P SOC PHOTO-OPT INS, V4895, P296
[7]   OPTICAL COHERENCE TOMOGRAPHY [J].
HUANG, D ;
SWANSON, EA ;
LIN, CP ;
SCHUMAN, JS ;
STINSON, WG ;
CHANG, W ;
HEE, MR ;
FLOTTE, T ;
GREGORY, K ;
PULIAFITO, CA ;
FUJIMOTO, JG .
SCIENCE, 1991, 254 (5035) :1178-1181
[8]  
Lexer F, 1999, J MOD OPTIC, V46, P541, DOI 10.1080/09500349908231282
[9]   Endoscopic optical coherence tomography based on a microelectromechanical mirror [J].
Pan, YT ;
Xie, HK ;
Fedder, GK .
OPTICS LETTERS, 2001, 26 (24) :1966-1968
[10]   Microdevices in medicine [J].
Polla, DL ;
Erdman, AG ;
Robbins, WP ;
Markus, DT ;
Diaz-Diaz, J ;
Rizq, R ;
Nam, Y ;
Brickner, HT ;
Wang, A ;
Krulevitch, P .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2000, 2 :551-576