Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices

被引:331
作者
Li, Baojun [1 ]
Cao, Huaqiang [1 ]
Shao, Jin [2 ]
Qu, Meizhen [2 ]
Warner, Jamie H. [3 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Chengdu Inst Organ Chem, Chengdu 610041, Peoples R China
[3] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
基金
中国博士后科学基金; 国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
LITHIUM ION BATTERIES; IRON-OXIDE NANOPARTICLES; PHOTOVOLTAIC DEVICES; REVERSIBLE CAPACITY; CYCLIC PERFORMANCE; ANODE MATERIAL; ELECTRODES; CARBON; FILMS; SUPERCAPACITORS;
D O I
10.1039/c0jm03717f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a Fe3O4 nanocrystals@graphene composite (FGC) was synthesized via a chemical deposition method by using graphene oxide as a precursor. We also investigate the structures, physicochemical properties and applications of FGCs, involving superparamagnetic performance, and use as supercapacitors and lithium ion battery (LIBs). The results showed that the Fe3O4 NCs were formed and incorporated onto the surface of the graphene sheets. The composite material FGC with a micrometre scale structure possessed similar size as the graphene sheets and exhibited superparamagnetic behavior at room temperature. The supercapacitance values of the FGC composites were enlarged compared with those of the graphene sheets or Fe3O4 NCs, which is attributed to the interaction between the Fe3O4 NCs and the graphene sheets. Meanwhile, a superior rechargeable stability of FGCs used as an anode material in LIBs can be observed.
引用
收藏
页码:5069 / 5075
页数:7
相关论文
共 79 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]  
[Anonymous], 1996, The Iron Oxides
[3]   Controlled Growth of Monodisperse Self-Supported Superparamagnetic Nanostructures of Spherical and Rod-Like CoFe2O4 Nanocrystals [J].
Bao, Ningzhong ;
Shen, Liming ;
Wang, Yu-Hsiang A. ;
Ma, Jianxing ;
Mazumdar, Dipanjan ;
Gupta, Arunava .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (36) :12900-+
[4]  
Bard A.J., 2001, Electrochemical Mathods: Fundamentals and Applications, V2nd
[5]   Synthesis, characterization, and li-electrochemical performance of highly porous Co3O4 powders [J].
Binotto, G. ;
Larcher, D. ;
Prakash, A. S. ;
Urbina, R. Herrera ;
Hegde, M. S. ;
Tarascon, J-M. .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :3032-3040
[6]  
BRETT CMA, 1993, ELECTROCHEMISTRY PRI, pCH7
[7]   CORE AND VALENCE LEVEL PHOTOEMISSION STUDIES OF IRON-OXIDE SURFACES AND OXIDATION OF IRON [J].
BRUNDLE, CR ;
CHUANG, TJ ;
WANDELT, K .
SURFACE SCIENCE, 1977, 68 (01) :459-468
[8]   A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials [J].
Cao, Aoneng ;
Liu, Zhen ;
Chu, Saisai ;
Wu, Minghong ;
Ye, Zhangmei ;
Cai, Zhengwei ;
Chang, Yanli ;
Wang, Shufeng ;
Gong, Qihuang ;
Liu, Yuanfang .
ADVANCED MATERIALS, 2010, 22 (01) :103-+
[9]   Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor [J].
Chen, Jie ;
Huang, Kelong ;
Liu, Suqin .
ELECTROCHIMICA ACTA, 2009, 55 (01) :1-5
[10]   Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries [J].
Chen, Shuang Qiang ;
Wang, Yong .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (43) :9735-9739