Analysis of genetic variation and potential applications in genome-scale metabolic modeling

被引:23
作者
Cardoso, Joao G. R. [1 ]
Andersen, Mikael Rordam [2 ]
Herrgard, Markus J. [1 ]
Sonnenschein, Nikolaus [1 ]
机构
[1] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Kogle Alle 6, DK-2970 Horsholm, Denmark
[2] Tech Univ Denmark, Dept Syst Biol, Lyngby, Denmark
来源
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY | 2015年 / 3卷
关键词
genetic variation; SNP; next-generation sequencing; constraint-based modeling; metabolic engineering; adaptive laboratory evolution; metabolism; high-throughput analysis; SINGLE NUCLEOTIDE POLYMORPHISMS; PREDICTING PHENOTYPIC VARIATION; CENTRAL CARBON METABOLISM; NON-SYNONYMOUS SNPS; ESCHERICHIA-COLI; HIGH-THROUGHPUT; MISSENSE SUBSTITUTIONS; PROTEIN MUTATIONS; DISEASE; GENOTYPE;
D O I
10.3389/fbioe.2015.00013
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology, there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic variation during a long term production process may lead to significant economic losses and it is important to understand how to control this type of variation. With the emergence of next-generation sequencing technologies, genetic variation in microbial strains can now be determined on an unprecedented scale and resolution by re-sequencing thousands of strains systematically. In this article, we review challenges in the integration and analysis of large-scale re-sequencing data, present an extensive overview of bioinformatics methods for predicting the effects of genetic variants on protein function, and discuss approaches for interfacing existing bioinformatics approaches with genome-scale models of cellular processes in order to predict effects of sequence variation on cellular phenotypes.
引用
收藏
页数:12
相关论文
共 111 条
[101]   METABOLIC CAPABILITIES OF ESCHERICHIA-COLI .2. OPTIMAL-GROWTH PATTERNS [J].
VARMA, A ;
PALSSON, BO .
JOURNAL OF THEORETICAL BIOLOGY, 1993, 165 (04) :503-522
[102]   Programming cells by multiplex genome engineering and accelerated evolution [J].
Wang, Harris H. ;
Isaacs, Farren J. ;
Carr, Peter A. ;
Sun, Zachary Z. ;
Xu, George ;
Forest, Craig R. ;
Church, George M. .
NATURE, 2009, 460 (7257) :894-U133
[103]   Deep resequencing reveals allelic variation in Sesamum indicum [J].
Wang, Linhai ;
Han, Xuelian ;
Zhang, Yanxin ;
Li, Donghua ;
Wei, Xin ;
Ding, Xia ;
Zhang, Xiurong .
BMC PLANT BIOLOGY, 2014, 14
[104]   FunSAV: Predicting the Functional Effect of Single Amino Acid Variants Using a Two-Stage Random Forest Model [J].
Wang, Mingjun ;
Zhao, Xing-Ming ;
Takemoto, Kazuhiro ;
Xu, Haisong ;
Li, Yuan ;
Akutsu, Tatsuya ;
Song, Jiangning .
PLOS ONE, 2012, 7 (08)
[105]   Cas9-Based Tools for Targeted Genome Editing and Transcriptional Control [J].
Xu, Tao ;
Li, Yongchao ;
Van Nostrand, Joy D. ;
He, Zhili ;
Zhou, Jizhong .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2014, 80 (05) :1544-1552
[106]   Complete Genome Sequence of Methanoregula formicica SMSPT, a Mesophilic Hydrogenotrophic Methanogen Isolated from a Methanogenic Upflow Anaerobic Sludge Blanket Reactor [J].
Yamamoto, Kyosuke ;
Tamaki, Hideyuki ;
Cadillo-Quiroz, Hinsby ;
Imachi, Hiroyuki ;
Kyrpides, Nikos ;
Woyke, Tanja ;
Goodwin, Lynne ;
Zinder, Stephen H. ;
Kamagata, Yoichi ;
Liu, Wen-Tso .
GENOME ANNOUNCEMENTS, 2014, 2 (05)
[107]   Genome-Scale Metabolic Network Validation of Shewanella oneidensis Using Transposon Insertion Frequency Analysis [J].
Yang, Hong ;
Krumholz, Elias W. ;
Brutinel, Evan D. ;
Palani, Nagendra P. ;
Sadowsky, Michael J. ;
Odlyzko, Andrew M. ;
Gralnick, Jeffrey A. ;
Libourel, Igor G. L. .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (09)
[108]   SuSPect: Enhanced Prediction of Single Amino Acid Variant (SAV) Phenotype Using Network Features [J].
Yates, Christopher M. ;
Filippis, Ioannis ;
Kelley, Lawrence A. ;
Sternberg, Michael J. E. .
JOURNAL OF MOLECULAR BIOLOGY, 2014, 426 (14) :2692-2701
[109]   Finding new structural and sequence attributes to predict possible disease association of single amino acid lpolymorphism (SAP) [J].
Ye, Zhi-Qiang ;
Zhao, Shu-Qi ;
Gao, Ge ;
Liu, Xiao-Qiao ;
Langlois, Robert E. ;
Lu, Hui ;
Wei, Liping .
BIOINFORMATICS, 2007, 23 (12) :1444-1450
[110]   SNPs3D: Candidate gene and SNP selection for association studies [J].
Yue, P ;
Melamud, E ;
Moult, J .
BMC BIOINFORMATICS, 2006, 7 (1)