Analysis of genetic variation and potential applications in genome-scale metabolic modeling

被引:23
作者
Cardoso, Joao G. R. [1 ]
Andersen, Mikael Rordam [2 ]
Herrgard, Markus J. [1 ]
Sonnenschein, Nikolaus [1 ]
机构
[1] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Kogle Alle 6, DK-2970 Horsholm, Denmark
[2] Tech Univ Denmark, Dept Syst Biol, Lyngby, Denmark
来源
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY | 2015年 / 3卷
关键词
genetic variation; SNP; next-generation sequencing; constraint-based modeling; metabolic engineering; adaptive laboratory evolution; metabolism; high-throughput analysis; SINGLE NUCLEOTIDE POLYMORPHISMS; PREDICTING PHENOTYPIC VARIATION; CENTRAL CARBON METABOLISM; NON-SYNONYMOUS SNPS; ESCHERICHIA-COLI; HIGH-THROUGHPUT; MISSENSE SUBSTITUTIONS; PROTEIN MUTATIONS; DISEASE; GENOTYPE;
D O I
10.3389/fbioe.2015.00013
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology, there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic variation during a long term production process may lead to significant economic losses and it is important to understand how to control this type of variation. With the emergence of next-generation sequencing technologies, genetic variation in microbial strains can now be determined on an unprecedented scale and resolution by re-sequencing thousands of strains systematically. In this article, we review challenges in the integration and analysis of large-scale re-sequencing data, present an extensive overview of bioinformatics methods for predicting the effects of genetic variants on protein function, and discuss approaches for interfacing existing bioinformatics approaches with genome-scale models of cellular processes in order to predict effects of sequence variation on cellular phenotypes.
引用
收藏
页数:12
相关论文
共 111 条
[51]   Composability of regulatory sequences controlling transcription and translation in Escherichia coli [J].
Kosuri, Sriram ;
Goodman, Daniel B. ;
Cambray, Guillaume ;
Mutalik, Vivek K. ;
Gao, Yuan ;
Arkin, Adam P. ;
Endy, Drew ;
Church, George M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (34) :14024-14029
[52]   A comparative study of machine-learning methods to predict the effects of single nucleotide polymorphisms on protein function [J].
Krishnan, VG ;
Westhead, DR .
BIOINFORMATICS, 2003, 19 (17) :2199-2209
[53]   Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm [J].
Kumar, Prateek ;
Henikoff, Steven ;
Ng, Pauline C. .
NATURE PROTOCOLS, 2009, 4 (07) :1073-1082
[54]   Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network [J].
Lee, Joungmin ;
Yun, Hongseok ;
Feist, Adam M. ;
Palsson, Bernhard O. ;
Lee, Sang Yup .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 80 (05) :849-862
[55]   Genotype to phenotype: lessons from model organisms for human genetics [J].
Lehner, Ben .
NATURE REVIEWS GENETICS, 2013, 14 (03) :168-178
[56]   Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods [J].
Lewis, Nathan E. ;
Nagarajan, Harish ;
Palsson, Bernhard O. .
NATURE REVIEWS MICROBIOLOGY, 2012, 10 (04) :291-305
[57]   Automated inference of molecular mechanisms of disease from amino acid substitutions [J].
Li, Biao ;
Krishnan, Vidhya G. ;
Mort, Matthew E. ;
Xin, Fuxiao ;
Kamati, Kishore K. ;
Cooper, David N. ;
Mooney, Sean D. ;
Radivojac, Predrag .
BIOINFORMATICS, 2009, 25 (21) :2744-2750
[58]   The sequence and de novo assembly of the giant panda genome [J].
Li, Ruiqiang ;
Fan, Wei ;
Tian, Geng ;
Zhu, Hongmei ;
He, Lin ;
Cai, Jing ;
Huang, Quanfei ;
Cai, Qingle ;
Li, Bo ;
Bai, Yinqi ;
Zhang, Zhihe ;
Zhang, Yaping ;
Wang, Wen ;
Li, Jun ;
Wei, Fuwen ;
Li, Heng ;
Jian, Min ;
Li, Jianwen ;
Zhang, Zhaolei ;
Nielsen, Rasmus ;
Li, Dawei ;
Gu, Wanjun ;
Yang, Zhentao ;
Xuan, Zhaoling ;
Ryder, Oliver A. ;
Leung, Frederick Chi-Ching ;
Zhou, Yan ;
Cao, Jianjun ;
Sun, Xiao ;
Fu, Yonggui ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Wang, Bo ;
Hou, Rong ;
Shen, Fujun ;
Mu, Bo ;
Ni, Peixiang ;
Lin, Runmao ;
Qian, Wubin ;
Wang, Guodong ;
Yu, Chang ;
Nie, Wenhui ;
Wang, Jinhuan ;
Wu, Zhigang ;
Liang, Huiqing ;
Min, Jiumeng ;
Wu, Qi ;
Cheng, Shifeng ;
Ruan, Jue ;
Wang, Mingwei .
NATURE, 2010, 463 (7279) :311-317
[59]   Reconstruction and modeling protein translocation and compartmentalization in Escherichia coli at the genome-scale [J].
Liu, Joanne K. ;
O'Brien, Edward J. ;
Lerman, Joshua A. ;
Zengler, Karsten ;
Palsson, Bernhard O. ;
Feist, Adam M. .
BMC SYSTEMS BIOLOGY, 2014, 8
[60]   The origin of new genes:: Glimpses from the young and old [J].
Long, M ;
Betrán, E ;
Thornton, K ;
Wang, W .
NATURE REVIEWS GENETICS, 2003, 4 (11) :865-875