Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition

被引:1040
作者
Kim, Ki Kang [1 ]
Hsu, Allen [1 ]
Jia, Xiaoting [2 ]
Kim, Soo Min [1 ]
Shi, Yumeng [1 ]
Hofmann, Mario [1 ]
Nezich, Daniel [1 ]
Rodriguez-Nieva, Joaquin F. [2 ]
Dresselhaus, Mildred [1 ,3 ]
Palacios, Tomas [1 ]
Kong, Jing [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Hexagonal boron nitride; chemical vapor deposition; ammonia borane; copper foil; N-H COMPOUNDS; THERMAL-DECOMPOSITION; OPTICAL-PROPERTIES; AMMONIA-BORANE; SINGLE-CRYSTAL; HIGH-QUALITY; GRAPHENE; FILMS; NI(111); COPPER;
D O I
10.1021/nl203249a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hexagonal boron nitride (h-BN) is very attractive for many applications, particularly, as protective coating, dielectric layer/substrate, transparent membrane, or deep ultraviolet emitter. In this work, we carried out a detailed investigation of h-BN synthesis on Cu substrate using chemical vapor deposition (CVD) with two heating zones under low pressure (LP). Previous atmospheric pressure (AP) CVD syntheses were only able to obtain few layer h-BN without a good control on the number of layers. In contrast, under LPCVD growth, monolayer h-BN was synthesized and time-dependent growth was investigated. It was also observed that the morphology of the Cu surface affects the location and density of the h-BN nucleation. Ammonia borane is used as a BN precursor, which is easily accessible and more stable under ambient conditions than borazine. The h-BN films are characterized by atomic force microscopy, transmission electron microscopy, and electron energy loss spectroscopy analyses. Our results suggest that the growth here occurs via surface-mediated growth, which is similar to graphene growth on Cu under low pressure. These atomically thin layers are particularly attractive for use as atomic membranes or dielectric layers/substrates for graphene devices.
引用
收藏
页码:161 / 166
页数:6
相关论文
共 32 条
[1]   Electrochemical Equilibria of Copper in Aqueous Phosphoric Acid Solutions [J].
Aksu, Serdar .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (11) :C387-C394
[2]   Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from B-trichloroborazine (ClBNH)3 [J].
Auwärter, W ;
Suter, HU ;
Sachdev, H ;
Greber, T .
CHEMISTRY OF MATERIALS, 2004, 16 (02) :343-345
[3]   Defect lines and two-domain structure of hexagonal boron nitride films on Ni(111) [J].
Auwärter, W ;
Muntwiler, M ;
Osterwalder, J ;
Greber, T .
SURFACE SCIENCE, 2003, 545 (1-2) :L735-L740
[4]   Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods [J].
Baitalow, F ;
Baumann, J ;
Wolf, G ;
Jaenicke-Rössler, K ;
Leitner, G .
THERMOCHIMICA ACTA, 2002, 391 (1-2) :159-168
[5]   Thermal decomposition of polymeric aminoborane (H2BNH2)x under hydrogen release [J].
Baumann, J ;
Baitalow, E ;
Wolf, G .
THERMOCHIMICA ACTA, 2005, 430 (1-2) :9-14
[6]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[7]   QUASI-PARTICLE BAND-STRUCTURE OF BULK HEXAGONAL BORON-NITRIDE AND RELATED SYSTEMS [J].
BLASE, X ;
RUBIO, A ;
LOUIE, SG ;
COHEN, ML .
PHYSICAL REVIEW B, 1995, 51 (11) :6868-6875
[8]   Boron nitride nanotubes: Pronounced resistance to oxidation [J].
Chen, Y ;
Zou, J ;
Campbell, SJ ;
Le Caer, G .
APPLIED PHYSICS LETTERS, 2004, 84 (13) :2430-2432
[9]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[10]   Hunting for Monolayer Boron Nitride: Optical and Raman Signatures [J].
Gorbachev, Roman V. ;
Riaz, Ibtsam ;
Nair, Rahul R. ;
Jalil, Rashid ;
Britnell, Liam ;
Belle, Branson D. ;
Hill, Ernie W. ;
Novoselov, Kostya S. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Geim, Andre K. ;
Blake, Peter .
SMALL, 2011, 7 (04) :465-468