Crystal Structure Transfer in Core/Shell Nanowires

被引:90
作者
Algra, Rienk E. [2 ,3 ,4 ]
Hocevar, Moira [1 ,3 ]
Verheijen, Marcel A. [3 ,5 ]
Zardo, Ilaria [6 ,7 ]
Immink, George G. W. [3 ]
van Enckevort, Willem J. P. [4 ]
Abstreiter, Gerhard [6 ,7 ]
Kouwenhoven, Leo P. [1 ]
Vlieg, Elias [4 ]
Bakkers, Erik P. A. M. [1 ,5 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[2] Mat Innovat Inst M2i, NL-2628 CD Delft, Netherlands
[3] Philips Res Labs Eindhoven, NL-5656 AE Eindhoven, Netherlands
[4] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[5] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[6] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
[7] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
关键词
Nanowire; structure transfer; epitaxy; superlattice; wurtzite; silicon; GAP-GAAS NANOWIRES; III-V NANOWIRES; SILICON NANOWIRES; TWINNING SUPERLATTICES; RAMAN-SCATTERING; SINGLE-CRYSTAL; GROWTH; NANOTUBES; STACKING;
D O I
10.1021/nl200208q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Structure engineering is an emerging tool to control opto-electronic properties of semiconductors. Recently, control of crystal structure and the formation of a twinning superlattice have been shown for III-V nanowires. This level of control has not been obtained for Si nanowires, the most relevant material for the semiconductor industry. Here, we present an approach, in which a designed twinning superlattice with the zinc blende crystal structure or the wurtzite crystal structure is transferred from a gallium phosphide core wire to an epitaxially grown silicon shell. These materials have a difference in lattice constants of only 0.4%, which allows for structure transfer without introducing extra defects The twinning superlattices, periodicity, and shell thickness can be tuned With great precision. Arrays of free-standing Si nanotubes are obtained by a selective wet-chemical etch of the core wire.
引用
收藏
页码:1690 / 1694
页数:5
相关论文
共 32 条
[1]   Crystal Phase Quantum Dots [J].
Akopian, N. ;
Patriarche, G. ;
Liu, L. ;
Harmand, J. -C. ;
Zwiller, V. .
NANO LETTERS, 2010, 10 (04) :1198-1201
[2]   Twinning superlattices in indium phosphide nanowires [J].
Algra, Rienk E. ;
Verheijen, Marcel A. ;
Borgstrom, Magnus T. ;
Feiner, Lou-Fe ;
Immink, George ;
van Enckevort, Willem J. P. ;
Vlieg, Elias ;
Bakkers, Erik P. A. M. .
NATURE, 2008, 456 (7220) :369-372
[3]   The Role of Surface Energies and Chemical Potential during Nanowire Growth [J].
Algra, Rienk E. ;
Verheijen, Marcel A. ;
Feiner, Lou-Fe ;
Immink, George G. W. ;
van Enckevort, Willem J. P. ;
Vlieg, Elias ;
Bakkers, Erik P. A. M. .
NANO LETTERS, 2011, 11 (03) :1259-1264
[4]  
[Anonymous], 2010, NAT NANOTECHNOLOGY, V5, P311
[5]  
Caroff P, 2009, NAT NANOTECHNOL, V4, P50, DOI [10.1038/nnano.2008.359, 10.1038/NNANO.2008.359]
[6]   Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins [J].
Cayron, Cyril ;
Den Hertog, Martien ;
Latu-Romain, Laurence ;
Mouchet, Celine ;
Secouard, Christopher ;
Rouviere, Jean-Luc ;
Rouviere, Emmanuelle ;
Simonato, Jean-Pierre .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2009, 42 :242-252
[7]   Remarkable Reduction of Thermal Conductivity in Silicon Nanotubes [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANO LETTERS, 2010, 10 (10) :3978-3983
[8]   Predicted band structures of III-V semiconductors in the wurtzite phase [J].
De, A. ;
Pryor, Craig E. .
PHYSICAL REVIEW B, 2010, 81 (15)
[9]   Formation of twinning-superlattice regions by artificial stacking of Si layers [J].
Fissel, A ;
Bugiel, E ;
Wang, CR ;
Osten, HJ .
JOURNAL OF CRYSTAL GROWTH, 2006, 290 (02) :392-397
[10]   Synthesis of silicon nanowires with wurtzite crystalline structure by using standard chemical vapor deposition [J].
Fontcuberta i Morral, Anna ;
Arbiol, Jordi ;
Prades, Joan Daniel ;
Cirera, Albert ;
Morante, Joan Ramon .
ADVANCED MATERIALS, 2007, 19 (10) :1347-+