Artificial intelligence in cancer imaging: Clinical challenges and applications

被引:1137
作者
Bi, Wenya Linda [1 ]
Hosny, Ahmed [2 ]
Schabath, Matthew B. [3 ]
Giger, Maryellen L. [4 ]
Birkbak, Nicolai J. [5 ,6 ]
Mehrtash, Alireza [7 ,8 ]
Allison, Tavis [9 ,10 ]
Arnaout, Omar [1 ]
Abbosh, Christopher [5 ,6 ]
Dunn, Ian F. [1 ]
Mak, Raymond H. [2 ]
Tamimi, Rulla M. [11 ]
Tempany, Clare M. [12 ]
Swanton, Charles [5 ,6 ]
Hoffmann, Udo [13 ,14 ]
Schwartz, Lawrence H. [10 ,15 ]
Gillies, Robert J. [16 ]
Huang, Raymond Y. [7 ]
Aerts, Hugo J. W. L. [2 ,7 ,17 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Neurosurg,Dept Neurosurg, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Radiat Oncol, Brigham & Womens Hosp, Dana Farber Canc Inst, Boston, MA 02115 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Epidemiol, Tampa, FL USA
[4] Univ Chicago, Dept Radiol, Radiol, Chicago, IL 60637 USA
[5] Francis Crick Inst, London, England
[6] UCL, Inst Canc, London, England
[7] Harvard Med Sch, Dept Radiol, Brigham & Womens Hosp, Dana Farber Canc Inst, Boston, MA 02115 USA
[8] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC, Canada
[9] Columbia Univ, Coll Phys & Surg, Dept Radiol, New York, NY USA
[10] New York Presbyterian Hosp, Dept Radiol, New York, NY USA
[11] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Dana Farber Canc Inst, Boston, MA 02115 USA
[12] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Radiol,Dept Radiol, Boston, MA 02115 USA
[13] Massachusetts Gen Hosp, Dept Radiol, Radiol, Boston, MA USA
[14] Harvard Med Sch, Boston, MA 02115 USA
[15] Columbia Univ, Coll Phys & Surg, Dept Radiol, Radiol, New York, NY USA
[16] H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Physiol, Radiol, Tampa, FL USA
[17] MUMC, AI Med Radiol & Nucl Med, GROW, Maastricht, Netherlands
基金
英国惠康基金; 美国国家卫生研究院; 加拿大自然科学与工程研究理事会; 加拿大健康研究院; 英国医学研究理事会;
关键词
artificial intelligence; cancer imaging; clinical challenges; deep learning; radiomics; COMPUTER-AIDED DETECTION; DIGITAL BREAST TOMOSYNTHESIS; BACKGROUND PARENCHYMAL ENHANCEMENT; CONVOLUTIONAL NEURAL-NETWORK; MULTI-PARAMETRIC MRI; DETECTION CAD SYSTEM; HIGH-GRADE GLIOMAS; PROSTATE-CANCER; LUNG-CANCER; PULMONARY NODULES;
D O I
10.3322/caac.21552
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care.
引用
收藏
页码:127 / 157
页数:31
相关论文
共 219 条
  • [1] Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution
    Abbosh, Christopher
    Birkbak, Nicolai J.
    Wilson, Gareth A.
    Jamal-Hanjani, Mariam
    Constantin, Tudor
    Salari, Raheleh
    Le Quesne, John
    Moore, David A.
    Veeriah, Selvaraju
    Rosenthal, Rachel
    Marafioti, Teresa
    Kirkizlar, Eser
    Watkins, Thomas B. K.
    McGranahan, Nicholas
    Ward, Sophia
    Martinson, Luke
    Riley, Joan
    Fraioli, Francesco
    Al Bakir, Maise
    Gronroos, Eva
    Zambrana, Francisco
    Endozo, Raymondo
    Bi, Wenya Linda
    Fennessy, Fiona M.
    Sponer, Nicole
    Johnson, Diana
    Laycock, Joanne
    Shafi, Seema
    Czyzewska-Khan, Justyna
    Rowan, Andrew
    Chambers, Tim
    Matthews, Nik
    Turajlic, Samra
    Hiley, Crispin
    Lee, Siow Ming
    Forster, Martin D.
    Ahmad, Tanya
    Falzon, Mary
    Borg, Elaine
    Lawrence, David
    Hayward, Martin
    Kolvekar, Shyam
    Panagiotopoulos, Nikolaos
    Janes, Sam M.
    Thakrar, Ricky
    Ahmed, Asia
    Blackhall, Fiona
    Summers, Yvonne
    Hafez, Dina
    Naik, Ashwini
    [J]. NATURE, 2017, 545 (7655) : 446 - +
  • [2] Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening
    Aberle, Denise R.
    Adams, Amanda M.
    Berg, Christine D.
    Black, William C.
    Clapp, Jonathan D.
    Fagerstrom, Richard M.
    Gareen, Ilana F.
    Gatsonis, Constantine
    Marcus, Pamela M.
    Sicks, JoRean D.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) : 395 - 409
  • [3] The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review
    Aerts, Hugo J. W. L.
    [J]. JAMA ONCOLOGY, 2016, 2 (12) : 1636 - 1642
  • [4] Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC
    Aerts, Hugo J. W. L.
    Grossmann, Patrick
    Tan, Yongqiang
    Oxnard, Geoffrey G.
    Rizvi, Naiyer
    Schwartz, Lawrence H.
    Zhao, Binsheng
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [5] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [6] Unsupervised Medical Image Segmentation Based on the Local Center of Mass
    Aganj, Iman
    Harisinghani, Mukesh G.
    Weissleder, Ralph
    Fischl, Bruce
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [7] Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study
    Ahmed, Hashim U.
    Bosaily, Ahmed El-Shater
    Brown, Louise C.
    Gabe, Rhian
    Kaplan, Richard
    Parmar, Mahesh K.
    Collaco-Moraes, Yolanda
    Ward, Katie
    Hindley, Richard G.
    Freeman, Alex
    Kirkham, Alex P.
    Oldroyd, Robert
    Parker, Chris
    Emberton, Mark
    [J]. LANCET, 2017, 389 (10071) : 815 - 822
  • [8] A prognostic cytogenetic scoring system to guide the adjuvant management of patients with atypical meningioma
    Aizer, Ayal A.
    Abedalthagafi, Malak
    Bi, Wenya Linda
    Horvath, Margaret C.
    Arvold, Nils D.
    Al-Mefty, Ossama
    Lee, Eudocia Q.
    Nayak, Lakshmi
    Rinne, Mikael L.
    Norden, Andrew D.
    Reardon, David A.
    Wen, Patrick Y.
    Ligon, Keith L.
    Ligon, Azra H.
    Beroukhim, Rameen
    Dunn, Ian F.
    Santagata, Sandro
    Alexander, Brian M.
    [J]. NEURO-ONCOLOGY, 2016, 18 (02) : 269 - 274
  • [9] Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence
    Akkus, Zeynettin
    Ali, Issa
    Sedlar, Jiri
    Agrawal, Jay P.
    Parney, Ian F.
    Giannini, Caterina
    Erickson, Bradley J.
    [J]. JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) : 469 - 476
  • [10] Validation of a method for measuring the volumetric breast density from digital mammograms
    Alonzo-Proulx, O.
    Packard, N.
    Boone, J. M.
    Al-Mayah, A.
    Brock, K. K.
    Shen, S. Z.
    Yaffe, M. J.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (11) : 3027 - 3044