Fast transient charging at the graphene/SiO2 interface causing hysteretic device characteristics

被引:129
作者
Lee, Young Gon [1 ]
Kang, Chang Goo [1 ]
Jung, Uk Jin [1 ]
Kim, Jin Ju [2 ]
Hwang, Hyeon Jun [1 ]
Chung, Hyun-Jong [3 ]
Seo, Sunae [4 ]
Choi, Rino [5 ]
Lee, Byoung Hun [1 ,2 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Kwangju 500712, South Korea
[2] Gwangju Inst Sci & Technol, Dept Nanobio Mat & Elect, Kwangju 500712, South Korea
[3] SAMSUNG Adv Inst Sci & Technol, Nongseo 446712, Kyeongki, South Korea
[4] Sejong Univ, Seoul 143747, South Korea
[5] Inha Univ, Inchon 402751, South Korea
关键词
DETRAPPING CHARACTERISTICS; GATE DIELECTRICS; TRANSISTORS; MOBILITY; VAPOR;
D O I
10.1063/1.3588033
中图分类号
O59 [应用物理学];
学科分类号
摘要
Device instabilities of graphene metal-oxide-semiconductor field effect transistors such as hysteresis and Dirac point shifts have been attributed to charge trapping in the underlying substrate, especially in SiO2. In this letter, trapping time constants around 87 mu s and 1.76 ms were identified using a short pulse current-voltage method. The values of two trapping time constants with reversible trapping behavior indicate that the hysteretic behaviors of graphene field effect transistors are due to neither charge trapping in the bulk SiO2 or tunneling into other interfacial materials. Also, it is concluded that the dc measurement method significantly underestimated the performance of graphene devices. (C) 2011 American Institute of Physics. [doi:10.1063/1.3588033]
引用
收藏
页数:3
相关论文
共 22 条
[1]   Mobility evaluation in transistors with charge-trapping gate dielectrics [J].
Bersuker, G ;
Zeitzoff, P ;
Sim, JH ;
Lee, BH ;
Choi, R ;
Brown, G ;
Young, CD .
APPLIED PHYSICS LETTERS, 2005, 87 (04)
[2]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[3]   Hysteresis in the resistance of a graphene device induced by charge modulation in the substrate [J].
Brant, J. C. ;
Leon, J. ;
Barbosa, T. C. ;
Araujo, E. N. D. ;
Archanjo, B. S. ;
Plentz, F. ;
Alves, E. S. .
APPLIED PHYSICS LETTERS, 2010, 97 (04)
[4]   Charge trapping and detrapping characteristics in hafnium silicate gate dielectric using an inversion pulse measurement technique [J].
Choi, R ;
Song, SC ;
Young, CD ;
Bersuker, G ;
Lee, BH .
APPLIED PHYSICS LETTERS, 2005, 87 (12) :1-3
[5]   Charge trapping and detrapping characteristics in hafnium silicate gate stack under static and dynamic stress [J].
Choi, R ;
Rhee, SJ ;
Lee, JC ;
Lee, BH ;
Bersuker, G .
IEEE ELECTRON DEVICE LETTERS, 2005, 26 (03) :197-199
[6]   Intrinsic Response of Graphene Vapor Sensors [J].
Dan, Yaping ;
Lu, Ye ;
Kybert, Nicholas J. ;
Luo, Zhengtang ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (04) :1472-1475
[7]   Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices [J].
Farmer, Damon B. ;
Golizadeh-Mojarad, Roksana ;
Perebeinos, Vasili ;
Lin, Yu-Ming ;
Tulevski, George S. ;
Tsang, James C. ;
Avouris, Phaedon .
NANO LETTERS, 2009, 9 (01) :388-392
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates [J].
Joshi, P. ;
Romero, H. E. ;
Neal, A. T. ;
Toutam, V. K. ;
Tadigadapa, S. A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (33)
[10]   Effect of Water Vapor on Electrical Properties of Individual Reduced Graphene Oxide Sheets [J].
Jung, Inhwa ;
Dikin, Dmitriy ;
Park, Sungjin ;
Cai, Weiwei ;
Mielke, Steven L. ;
Ruoff, Rodney S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (51) :20264-20268