Air-stable, non-volatile resistive memory based on hybrid organic/inorganic nanocomposites

被引:47
作者
Casula, Giulia [1 ]
Cosseddu, Piero [2 ]
Busby, Yan [3 ]
Pireaux, Jean-Jacques [3 ]
Rosowski, Marcin [4 ]
Szczesna, Beata Tkacz [4 ]
Soliwoda, Katarzyna [4 ]
Celichowski, Grzegorz [4 ]
Grobelny, Jaroslaw [4 ]
Novak, Jiri [5 ,6 ]
Banerjee, Rupak [6 ]
Schreiber, Frank [6 ]
Bonfiglio, Annalisa [1 ]
机构
[1] Univ Cagliari, Dept Elect & Elect Engn, I-09123 Cagliari, Italy
[2] CNR, Inst Nanosci, Ctr S3, I-41100 Modena, Italy
[3] Univ Namur, Res Ctr Phys Matter & Radiat PMR, Lab Interdisciplinaire Spect Elect, B-5000 Namur, Belgium
[4] Univ Lodz, Dept Chem & Mat Technol, PL-90236 Lodz, Poland
[5] Masaryk Univ, Cent European Inst Technol, CZ-62500 Brno, Czech Republic
[6] Univ Tubingen, Inst Appl Phys, D-72076 Tubingen, Germany
关键词
Organic memories; Resistive switching; Metal nanoparticles; Filamentary conduction; THIN-FILM; ELECTRICAL BISTABILITY; BISTABLE DEVICES; POLYMER; TRANSISTORS; NANOPARTICLES;
D O I
10.1016/j.orgel.2015.01.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A non-volatile memory element based on organic/inorganic nanocomposites is presented. The device can be operated in ambient conditions, showing high retention time and long-term life time. The formation/rupture of metallic filaments in the organic matrix is investigated by HR-XPS and ToF-SIMS analysis, and is demonstrated to be the driving mechanism for the resistive switching. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 37 条
[1]   Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles [J].
Bozano, LD ;
Kean, BW ;
Beinhoff, M ;
Carter, KR ;
Rice, PM ;
Scott, JC .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (12) :1933-1939
[2]   Mechanism for bistability in organic memory elements [J].
Bozano, LD ;
Kean, BW ;
Deline, VR ;
Salem, JR ;
Scott, JC .
APPLIED PHYSICS LETTERS, 2004, 84 (04) :607-609
[3]   Metal nanoparticle size distribution in hybrid organic/inorganic films determined by high resolution X-ray photoelectron spectroscopy [J].
Busby, Y. ;
Pireaux, J. J. .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2014, 192 :13-18
[4]   Organic Resistive Memory Devices: Performance Enhancement, Integration, and Advanced Architectures [J].
Cho, Byungjin ;
Song, Sunghun ;
Ji, Yongsung ;
Kim, Tae-Wook ;
Lee, Takhee .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (15) :2806-2829
[5]   Organic donor-acceptor system exhibiting electrical bistability for use in memory devices [J].
Chu, CW ;
Ouyang, J ;
Tseng, HH ;
Yang, Y .
ADVANCED MATERIALS, 2005, 17 (11) :1440-+
[6]   The path to ubiquitous and low-cost organic electronic appliances on plastic [J].
Forrest, SR .
NATURE, 2004, 428 (6986) :911-918
[7]   Conjugated polymer-based organic solar cells [J].
Guenes, Serap ;
Neugebauer, Helmut ;
Sariciftci, Niyazi Serdar .
CHEMICAL REVIEWS, 2007, 107 (04) :1324-1338
[8]   Flexible Multilevel Resistive Memory with Controlled Charge Trap Band N-Doped Carbon Nanotubes [J].
Hwang, Sun Kak ;
Lee, Ju Min ;
Kim, Seungjun ;
Park, Ji Sun ;
Park, Hyung Il ;
Ahn, Chi Won ;
Lee, Keon Jae ;
Lee, Takhee ;
Kim, Sang Ouk .
NANO LETTERS, 2012, 12 (05) :2217-2221
[9]   Organic Nonvolatile Resistive Switching Memory Based on Molecularly Entrapped Fullerene Derivative within a Diblock Copolymer Nanostructure [J].
Jo, Hanju ;
Ko, Jieun ;
Lim, Jung Ah ;
Chang, Hye Jung ;
Kim, Youn Sang .
MACROMOLECULAR RAPID COMMUNICATIONS, 2013, 34 (04) :355-361
[10]   Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors [J].
Kergoat, Loig ;
Piro, Benoit ;
Berggren, Magnus ;
Horowitz, Gilles ;
Minh-Chau Pham .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2012, 402 (05) :1813-1826