Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies

被引:2975
作者
Cancado, L. G. [1 ]
Jorio, A. [1 ]
Martins Ferreira, E. H. [2 ]
Stavale, F. [2 ]
Achete, C. A. [2 ]
Capaz, R. B. [3 ]
Moutinho, M. V. O. [3 ]
Lombardo, A. [4 ]
Kulmala, T. S. [4 ]
Ferrari, A. C. [4 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[2] Inst Nacl Metrol Normalizacao & Qualidade Ind INM, Div Metrol Mat, BR-25250020 Rio De Janeiro, Brazil
[3] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
[4] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
基金
英国工程与自然科学研究理事会;
关键词
Graphene; defects; Raman spectroscopy; excitation energy; X-RAY-DIFFRACTION; SIZE L-A; SCATTERING; GRAPHITE; CARBONS; SPECTRA; DIAMOND; ORIGIN; INTERCALATION; 1ST-ORDER;
D O I
10.1021/nl201432g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a Raman study of Ar+-bombarded graphene samples with increasing ion doses. This allows us to have a controlled, increasing, amount of defects. We find that I the ratio between the D and G peak intensities, for a given defect density, strongly depends on the laser excitation energy. We quantify this effect and present a simple equation for the determination of the point defect density in graphene via Raman spectroscopy for any visible excitation energy. We note that, for all excitations, the D to G intensity ratio reaches a maximum for an interdefect distance similar to 3 nm. Thus, a given ratio could correspond to two different defect densities, above or below the maximum. The analysis of the G peak width and its dispersion with excitation energy solves this ambiguity.
引用
收藏
页码:3190 / 3196
页数:7
相关论文
共 64 条
[1]   Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene [J].
Basko, D. M. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2009, 80 (16)
[2]   Calculation of the Raman G peak intensity in monolayer graphene: role of Ward identities [J].
Basko, D. M. .
NEW JOURNAL OF PHYSICS, 2009, 11
[3]   Theory of resonant multiphonon Raman scattering in graphene [J].
Basko, D. M. .
PHYSICAL REVIEW B, 2008, 78 (12)
[4]   Low Temperature Raman Study of the Electron Coherence Length near Graphene Edges [J].
Beams, Ryan ;
Cancado, Luiz Gustavo ;
Novotny, Lukas .
NANO LETTERS, 2011, 11 (03) :1177-1181
[5]   Geometrical approach for the study of G′ band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite [J].
Cancado, L. G. ;
Reina, A. ;
Kong, J. ;
Dresselhaus, M. S. .
PHYSICAL REVIEW B, 2008, 77 (24)
[6]   Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size [J].
Cancado, L. G. ;
Jorio, A. ;
Pimenta, M. A. .
PHYSICAL REVIEW B, 2007, 76 (06)
[7]   Measuring the degree of stacking order in graphite by Raman spectroscopy [J].
Cancado, L. G. ;
Takai, K. ;
Enoki, T. ;
Endo, M. ;
Kim, Y. A. ;
Mizusaki, H. ;
Speziali, N. L. ;
Jorio, A. ;
Pimenta, M. A. .
CARBON, 2008, 46 (02) :272-275
[8]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[9]   Influence of the atomic structure on the Raman spectra of graphite edges -: art. no. 247401 [J].
Cançado, LG ;
Pimenta, MA ;
Neves, BRA ;
Dantas, MSS ;
Jorio, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (24)
[10]   Raman fingerprint of charged impurities in graphene [J].
Casiraghi, C. ;
Pisana, S. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)