The inhomogeneous Dirichlet problem for Δ2 in Lipschitz domains

被引:32
作者
Adolfsson, V [1 ]
Pipher, J
机构
[1] Univ Gothenburg, Dept Math, S-41296 Gothenburg, Sweden
[2] Chalmers Univ Technol, S-41296 Gothenburg, Sweden
[3] Brown Univ, Dept Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
biharmonic functions; Lipschitz domains; Whitney arrays; Sobolev spaces; Besov spaces;
D O I
10.1006/jfan.1998.3300
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the inhomogeneous Dirichlet problem for the bi-laplacian with data given in Sobolev and Besov spaces on non-smooth domains. (C) 1998 Academic Press.
引用
收藏
页码:137 / 190
页数:54
相关论文
共 29 条
[21]   AREA INTEGRAL ESTIMATES FOR THE BIHARMONIC OPERATOR IN LIPSCHITZ-DOMAINS [J].
PIPHER, J ;
VERCHOTA, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 327 (02) :903-917
[22]   A MAXIMUM PRINCIPLE FOR BIHARMONIC FUNCTIONS IN LIPSCHITZ AND C(1) DOMAINS [J].
PIPHER, J ;
VERCHOTA, G .
COMMENTARII MATHEMATICI HELVETICI, 1993, 68 (03) :385-414
[23]  
PIPHER J, MAXIMUM PRINCIPLES P
[24]  
POLKING JC, RESTRICTION THEOREM
[25]  
Rudin W., 1979, Functional Analysis
[26]  
STEIN E. M., 1971, INTRO FOURIER ANAL E, V32
[27]  
STEIN EM, 1970, SINGULAR INTEGRALS D
[29]   THE DIRICHLET PROBLEM FOR THE BIHARMONIC EQUATION IN C1 DOMAINS [J].
VERCHOTA, G .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (04) :867-895