Radio frequency analog electronics based on carbon nanotube transistors

被引:116
作者
Kocabas, Coskun [2 ]
Kim, Hoon-sik [3 ]
Banks, Tony [7 ]
Rogers, John A. [3 ,4 ,5 ,6 ]
Pesetski, Aaron A. [1 ]
Baumgardner, James E. [1 ]
Krishnaswamy, S. V. [1 ]
Zhang, Hong [1 ]
机构
[1] Northrop Grumman Elect Syst, Linthicum, MD 21090 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[6] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[7] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
关键词
D O I
10.1073/pnas.0709734105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The potential to exploit single-walled carbon nanotubes (SWNTs) in advanced electronics represents a continuing, major source of interest in these materials. However, scalable integration of SWNTs into circuits is challenging because of difficulties in controlling the geometries, spatial positions, and electronic properties of individual tubes. We have implemented solutions to some of these challenges to yield radio frequency (RF) SWNT analog electronic devices, such as narrow band amplifiers operating in the VHF frequency band with power gains as high as 14 dB. As a demonstration, we fabricated nanotube transistor radios, in which SWNT devices provide all of the key functions, including resonant antennas, fixed RF amplifiers, RF mixers, and audio amplifiers. These results represent important first steps to practical implementation of SWNTs in high-speed analog circuits. Comparison studies indicate certain performance advantages over silicon and capabilities that complement those in existing compound semiconductor technologies.
引用
收藏
页码:1405 / 1409
页数:5
相关论文
共 26 条
[1]   THE TRANSISTOR, A SEMI-CONDUCTOR TRIODE [J].
BARDEEN, J ;
BRATTAIN, WH .
PHYSICAL REVIEW, 1948, 74 (02) :230-231
[2]   Inherent linearity in carbon nanotube field-effect transistors [J].
Baumgardner, James E. ;
Pesetski, Aaron A. ;
Murduck, James M. ;
Przybysz, John X. ;
Adam, John D. ;
Zhang, Hong .
APPLIED PHYSICS LETTERS, 2007, 91 (05)
[3]   An 8-GHz ft carbon nanotube field-effect transistor for gigahertz range applications [J].
Bethoux, J. -M. ;
Happy, H. ;
Dambrine, G. ;
Derycke, V. ;
Goffman, M. ;
Bourgoin, J. -P. .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (08) :681-683
[4]   Orientation-dependent C60 electronic structures revealed by photoemission spectroscopy (vol 93, pg 197601, 2004) -: art. no. 099903 [J].
Brouet, V ;
Yang, WL ;
Zhou, XJ ;
Choi, HJ ;
Louie, SG ;
Cohen, ML ;
Goldoni, A ;
Parmigiani, F ;
Hussain, Z ;
Shen, ZX .
PHYSICAL REVIEW LETTERS, 2005, 95 (09)
[5]   AC performance of nanoelectronics: towards a ballistic THz nanotube transistor [J].
Burke, PJ .
SOLID-STATE ELECTRONICS, 2004, 48 (10-11) :1981-1986
[6]  
Burke W.E., 1955, PF REPORTER, P13
[7]   Benchmarking nanotechnology for high-performance and low-power logic transistor applications [J].
Chau, R ;
Datta, S ;
Doczy, M ;
Doyle, B ;
Jin, J ;
Kavalieros, J ;
Majumdar, A ;
Metz, M ;
Radosavljevic, M .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (02) :153-158
[8]   An integrated logic circuit assembled on a single carbon nanotube [J].
Chen, ZH ;
Appenzeller, J ;
Lin, YM ;
Sippel-Oakley, J ;
Rinzler, AG ;
Tang, JY ;
Wind, SJ ;
Solomon, PM ;
Avouris, P .
SCIENCE, 2006, 311 (5768) :1735-1735
[9]  
COLLIN RE, 2001, FDN MICROWAVE ENG, P728
[10]   Extraordinary mobility in semiconducting carbon nanotubes [J].
Durkop, T ;
Getty, SA ;
Cobas, E ;
Fuhrer, MS .
NANO LETTERS, 2004, 4 (01) :35-39