Electrical characterization of organic based transistors:: stability issues

被引:51
作者
Gomes, HL
Stallinga, P
Dinelli, F
Murgia, M
Biscarini, F
de Leeuw, DM
Muccini, M
Müllen, K
机构
[1] Univ Algarve, Fac Sci & Technol, P-8000 Faro, Portugal
[2] CNR, Ist Studio mat Nanostrutturati, I-40129 Bologna, Italy
[3] Phillips Res, NL-5656 AA Eindhoven, Netherlands
[4] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
关键词
organic transistor; stabilization; electrical properties; amorphous; silicones;
D O I
10.1002/pat.558
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
An investigation into the stability of metal insulator semiconductor (MIS) transistors based on alpha-sexithiophene is reported. In particular the kinetics of the threshold voltage shift upon application of a gate bias has been determined. The kinetics follow a stretched-hyperbola type behavior, in agreement with the formalism developed to explain metastability in amorphous-silicon thin film transistors. Using this model, quantification of device stability is possible. Temperature-dependent measurements show that there are two processes involved in the threshold voltage shift, one occurring at T approximate to 220 K and the other at T approximate to 300 K. The latter process is found to be sample dependent. This suggests a relation between device stability and alpha-sexithiophene deposition parameters. Copyright (c) 2005 John Wiley A Sons, Ltd.
引用
收藏
页码:227 / 231
页数:5
相关论文
共 21 条
[1]   Field-effect transistors made from solution-processed organic semiconductors [J].
Brown, AR ;
Jarrett, CP ;
deLeeuw, DM ;
Matters, M .
SYNTHETIC METALS, 1997, 88 (01) :37-55
[2]   New procedure for the extraction of basic a-Si:H TFT model parameters in the linear and saturation regions [J].
Cerdeira, A ;
Estrada, M ;
García, R ;
Ortiz-Conde, A ;
Sánchez, FJG .
SOLID-STATE ELECTRONICS, 2001, 45 (07) :1077-1080
[3]   DEFECT RELAXATION IN AMORPHOUS-SILICON - STRETCHED EXPONENTIALS, THE MEYER-NELDEL RULE, AND THE STAEBLER-WRONSKI EFFECT [J].
CRANDALL, RS .
PHYSICAL REVIEW B, 1991, 43 (05) :4057-4070
[4]   Unification of the time and temperature dependence of dangling-bond-defect creation and removal in amorphous-silicon thin-film transistors [J].
Deane, SC ;
Wehrspohn, RB ;
Powell, MJ .
PHYSICAL REVIEW B, 1998, 58 (19) :12625-12628
[5]   Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors [J].
Horowitz, G ;
Hajlaoui, ME ;
Hajlaoui, R .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :4456-4463
[6]   ROLE OF HYDROGEN IN THE FORMATION OF METASTABLE DEFECTS IN HYDROGENATED AMORPHOUS-SILICON [J].
JACKSON, WB ;
MARSHALL, JM ;
MOYER, MD .
PHYSICAL REVIEW B, 1989, 39 (02) :1164-1179
[7]   CHARACTERIZATION OF INSTABILITY IN AMORPHOUS-SILICON THIN-FILM TRANSISTORS [J].
KANEKO, Y ;
SASANO, A ;
TSUKADA, T .
JOURNAL OF APPLIED PHYSICS, 1991, 69 (10) :7301-7305
[8]   BIAS-STRESS-INDUCED STRETCHED-EXPONENTIAL TIME-DEPENDENCE OF CHARGE INJECTION AND TRAPPING IN AMORPHOUS THIN-FILM TRANSISTORS [J].
LIBSCH, FR ;
KANICKI, J .
APPLIED PHYSICS LETTERS, 1993, 62 (11) :1286-1288
[9]  
Lustig N., 1988, MATER RES SOC S P, V118, P267
[10]   Bias-stress induced instability of organic thin film transistors [J].
Matters, M ;
de Leeuw, DM ;
Herwig, PT ;
Brown, AR .
SYNTHETIC METALS, 1999, 102 (1-3) :998-999