Dry and Noncontact EEG Sensors for Mobile Brain-Computer Interfaces

被引:154
作者
Chi, Yu Mike [1 ]
Wang, Yu-Te [2 ,3 ]
Wang, Yijun [2 ,3 ]
Maier, Christoph [2 ,4 ]
Jung, Tzyy-Ping [2 ,3 ]
Cauwenberghs, Gert [2 ,4 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, Jacobs Sch Engn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Inst Neural Computat, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Inst Engn Med, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Bioengn, Jacobs Sch Engn, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Brain-computer interface (BCI); capacitive electrodes; dry electrodes; electroencephalographic (EEG); noncontact electrodes; steady state visual evoked potential (SSVEP); ELECTRODE;
D O I
10.1109/TNSRE.2011.2174652
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Dry and noncontact electroencephalographic (EEG) electrodes, which do not require gel or even direct scalp coupling, have been considered as an enabler of practical, real-world, brain-computer interface (BCI) platforms. This study compares wet electrodes to dry and through hair, noncontact electrodes within a steady state visual evoked potential (SSVEP) BCI paradigm. The construction of a dry contact electrode, featuring fingered contact posts and active buffering circuitry is presented. Additionally, the development of a new, noncontact, capacitive electrode that utilizes a custom integrated, high-impedance analog front-end is introduced. Offline tests on 10 subjects characterize the signal quality from the different electrodes and demonstrate that acquisition of small amplitude, SSVEP signals is possible, even through hair using the new integrated noncontact sensor. Online BCI experiments demonstrate that the information transfer rate (ITR) with the dry electrodes is comparable to that of wet electrodes, completely without the need for gel or other conductive media. In addition, data from the noncontact electrode, operating on the top of hair, show a maximum ITR in excess of 19 bits/min at 100% accuracy (versus 29.2 bits/min for wet electrodes and 34.4 bits/min for dry electrodes), a level that has never been demonstrated before. The results of these experiments show that both dry and noncontact electrodes, with further development, may become a viable tool for both future mobile BCI and general EEG applications.
引用
收藏
页码:228 / 235
页数:8
相关论文
共 31 条
[1]   An active, microfabricated, scalp electrode array for EEG recording [J].
AlizadehTaheri, B ;
Smith, RL ;
Knight, RT .
SENSORS AND ACTUATORS A-PHYSICAL, 1996, 54 (1-3) :606-611
[2]  
[Anonymous], 2010, IEEE REV BIOMED ENG, DOI DOI 10.1109/RBME.2010.2084078
[3]   An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method [J].
Bin, Guangyu ;
Gao, Xiaorong ;
Yan, Zheng ;
Hong, Bo ;
Gao, Shangkai .
JOURNAL OF NEURAL ENGINEERING, 2009, 6 (04)
[4]  
Chi Y., 2011, IEEE BIOM CIRC SYST
[5]  
Chi Y., 2011, IEEE CAS FEST 2011 F
[6]   Micropower Non-contact EEG Electrode with Active Common-Mode Noise Suppression and Input Capacitance Cancellation [J].
Chi, Yu M. ;
Cauwenberghs, Gert .
2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, :4218-+
[7]   A mobile EEG system with dry electrodes [J].
Gargiulo, Gaetano ;
Bifulco, Paolo ;
Calvo, Rafael A. ;
Cesarelli, Mario ;
Jin, Craig ;
van Schaik, Andre .
2008 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE - INTELLIGENT BIOMEDICAL SYSTEMS (BIOCAS), 2008, :273-+
[8]  
Gevins A., 1990, Patent, Patent No. [US4967038, 4967038]
[9]   Characterization of micromachined spiked biopotential electrodes [J].
Griss, P ;
Tolvanen-Laakso, HK ;
Meriläinen, P ;
Stemme, G .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (06) :597-604
[10]  
Griss P., 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308), P323, DOI 10.1109/MEMSYS.2000.838537