Effective increase of single-crystalline yield during PVT growth of SiC by tailoring of temperature gradient

被引:36
作者
Herro, ZG
Epelbaum, BM
Bickermann, M
Masri, P
Winnacker, A
机构
[1] Univ Erlangen Nurnberg, Dept Mat Sci 6, D-91058 Erlangen, Germany
[2] Univ Montpellier 2, CNRS UMR5650, Etud Semicond Grp, F-34095 Montpellier, France
[3] SiCrystal AG, D-91052 Erlangen, Germany
关键词
crystal structure; growth from vapor; silicon carbide;
D O I
10.1016/j.jcrysgro.2003.10.060
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The dependence of the single-crystalline yield on the thermal field during physical vapour transport growth of SiC was investigated systematically. It is shown that the development of a flat faceted growth interface improves crystal quality but restrains enlargement of the single-crystalline part in the grown SiC boules. A highly convex interface shape allows effective enlargement but leads to enhanced generation of defects. Modifications of the growth process were made to separately control the thermal field at the periphery of the growing SiC boules and in the central area. With proper tailoring of the temperature gradient, an enlargement of the single-crystalline part from 35 to 45 mm in diameter was achieved within one growth run. The idea can be extended to larger diameters as well. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 15 条
[1]   Temperature gradient controlled SiC crystal growth [J].
Anikin, M ;
Madar, R .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 46 (1-3) :278-286
[2]   Enlargement of SiC single crystal: Enhancement of lateral growth using tapered graphite lid [J].
Bahng, W ;
Kitou, Y ;
Nishizawa, S ;
Yamaguchi, H ;
Khan, MN ;
Oyanagi, N ;
Arai, K ;
Nishino, S .
SILICON CARBIDE AND RELATED MATERIALS - 1999 PTS, 1 & 2, 2000, 338-3 :103-106
[3]   Virtual reactor as a new tool for modeling and optimization of SiC bulk crystal growth [J].
Bogdanov, MV ;
Galyukov, AO ;
Karpov, SY ;
Kulik, AV ;
Kochuguev, SK ;
Ofengeim, DK ;
Tsiryulnikov, AV ;
Ramm, MS ;
Zhmakin, AI ;
Makarov, YN .
JOURNAL OF CRYSTAL GROWTH, 2001, 225 (2-4) :307-311
[4]   GROWTH OF SILICON CRYSTALS FREE FROM DISLOCATIONS [J].
DASH, WC .
JOURNAL OF APPLIED PHYSICS, 1959, 30 (04) :459-474
[5]  
Herro Z, 2002, MATER SCI FORUM, V433-4, P67, DOI 10.4028/www.scientific.net/MSF.433-436.67
[6]   SiC-bulk growth by physical-vapor transport and its global modelling [J].
Hofmann, D ;
Eckstein, R ;
Kolbl, M ;
Makarov, Y ;
Muller, SG ;
Schmitt, E ;
Winnacker, A ;
Rupp, R ;
Stein, R ;
Volkl, J .
JOURNAL OF CRYSTAL GROWTH, 1997, 174 (1-4) :669-674
[7]  
KNIPPENBERG WF, 1963, PHILIPS RES REP, V18, P257
[8]  
Lely J A., 1958, US Patent, Patent No. 2854364
[9]  
Lely J.A., 1955, Berichte der Deutschen Keramischen Gesellschaft, V32, P229
[10]   Facetting during directional growth of oxides from the melt: coupling between thermal fields, kinetics and melt/crystal interface shapes [J].
Liu, YC ;
Virozub, A ;
Brandon, S .
JOURNAL OF CRYSTAL GROWTH, 1999, 205 (03) :333-353