A facile solution-phase approach to the synthesis of luminescent europium methacrylate nanowires and their thermal conversion into europium oxide nanotubes

被引:21
作者
Cui, Fang [1 ]
Zhang, Junhu [1 ]
Cui, Tieyu [2 ]
Liang, Sen [1 ]
Ming, Luo [1 ]
Gao, Zhongmin [3 ]
Yang, Bai [1 ]
机构
[1] Jilin Univ, Coll Chem, State Key Lab Supermol Struct & Mat, Changchun 130012, Peoples R China
[2] Chinese Acad Sci, Met Res Inst, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[3] Jilin Univ, Coll Chem, State Key Lab Inorgan Synthesis & Preparat Chem, Changchun 130012, Peoples R China
关键词
D O I
10.1088/0957-4484/19/6/065607
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Novel one-dimensional (1D) nanostructures of rare earth complexes (europium methacrylate (Eu(MA)(3))) have been prepared from the precursor of irregularly shaped Eu(MA)(3) powder in ethanol solvent without the assistance of an added surfactant, catalyst, or template. These hexagonal-shaped complex nanowires have diameters of about 100-300 nm and lengths ranging from tens to hundreds of micrometers. Nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) studies and thermogravimetric analysis (TGA) show that the precursor powder and the resulting nanowires have identical compositions. Under UV light excitation, strong red fluorescence can be clearly seen throughout the whole wires. This good luminescence characteristic of the complex nanowires is further confirmed by the fluorescence spectrum where strong and narrow emission can be seen. These rare earth complex nanowires provide a useful source for 1D rare earth oxide materials, as the europium ions are distributed uniformly in the Eu(MA)(3) nanowires. Through calcination, the Eu(MA)(3) nanowires are successfully converted into Eu2O3 nanotubes. X-ray investigation confirms that the Eu2O3 nanotubes have a cubic body-centered structure. FTIR measurements and TGA analysis are used to follow the calcination process. A plausible mechanism responsible for the formation of Eu2O3 nanotubes is presented.
引用
收藏
页数:6
相关论文
共 51 条
[1]   The binary rare earth oxides [J].
Adachi, G ;
Imanaka, N .
CHEMICAL REVIEWS, 1998, 98 (04) :1479-1514
[2]   Luminescent properties of pure cubic phase Y2O3/Eu3+ nanotubes/nanowires prepared by a hydrothermal method [J].
Bai, X ;
Song, HW ;
Yu, LX ;
Yang, LM ;
Liu, ZX ;
Pan, GH ;
Lu, SZ ;
Ren, XG ;
Lei, YQ ;
Fan, LB .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (32) :15236-15242
[3]   Nanobelt self-assembly from an organic n-type semiconductor: Propoxyethyl-PTCDI [J].
Balakrishnan, K ;
Datar, A ;
Oitker, R ;
Chen, H ;
Zuo, JM ;
Zang, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (30) :10496-10497
[4]   Lanthanide-containing molecular and supramolecular polymetallic functional assemblies [J].
Bünzli, JCG ;
Piguet, C .
CHEMICAL REVIEWS, 2002, 102 (06) :1897-1928
[5]   Synthesis, characterization and optical properties of Eu2O3 mesoporous thin films [J].
Castro, Yolanda ;
Julian, Beatriz ;
Boissiere, Cedric ;
Viana, Bruno ;
Amenitsch, Heinz ;
Grosso, David ;
Sanchez, Clement .
NANOTECHNOLOGY, 2007, 18 (05)
[6]   From monomeric nanofibers to PbS nanoparticles/polymer composite nanofibers through the combined use of γ-irradiation and gas/solid reaction [J].
Cui, Tieyu ;
Cui, Fang ;
Zhang, Junhu ;
Wang, Jiayu ;
Huang, Jing ;
Lu, Changli ;
Chen, Zhimin ;
Yang, Bai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (19) :6298-6299
[7]  
Du N., 2007, NANOTECHNOLOGY, V18
[8]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[9]   Nanofibers of 1,3-diphenyl-2-pyrazoline induced by cetyltrimethylammonium bromide micelles [J].
Fu, HB ;
Xiao, DB ;
Yao, JN ;
Yang, GQ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (25) :2883-2886
[10]   Fabrication of polydiacetylene nanowires by associated self-polymerization and self-assembly processes for efficient field emission properties [J].
Gan, HY ;
Liu, HB ;
Li, YJ ;
Zhao, Q ;
Li, YL ;
Wang, S ;
Jiu, TG ;
Wang, N ;
He, XR ;
Yu, DP ;
Zhu, DB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (36) :12452-12453