Atomic layer deposition of ZnS via in situ production of H2S

被引:67
作者
Bakke, J. R. [1 ]
King, J. S. [1 ]
Jung, H. J. [2 ]
Sinclair, R. [2 ]
Bent, S. F. [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Zinc sulfide; Atomic layer deposition; Hydrogen sulfide; Band gap; Stacking fault; Zincblende; Wurtzite; Transmission electron microscopy; CHEMICAL BATH DEPOSITION; SULFIDE THIN-FILMS; OPTICAL-PROPERTIES; GROWTH; EPITAXY; CDS; THIOACETAMIDE;
D O I
10.1016/j.tsf.2010.03.074
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Atomic layer deposition (ALD) of ZnS films utilizing diethylzinc and in situ generated H2S was performed over a temperature range of 60 degrees C-400 degrees C. This method for generating H2S in situ was developed to eliminate the need to store high pressure H2S gas. The H2S precursor was generated by heating thioacetamide to 150 degrees C in an inert atmosphere, producing acetonitrile and H2S as confirmed with mass spectroscopy. ALD behavior was confirmed by investigation of growth behavior and saturation curves. The properties of the films were studied with X-ray diffraction, transmission electron microscopy, ellipsometry, atomic force microscopy, scanning electron microscopy, ultraviolet visible spectroscopy, and X-ray photoelectron spectroscopy. The results show a growth rate that monotonically decreases with temperature, and films that are stoichiometric in Zn and S. The root mean square roughness of the films increases with temperature above 100 degrees C. A change in crystal phase begins at 300 degrees C. The band gap is dependent on the crystal phase and is estimated to be 3.6-4 eV. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:5400 / 5408
页数:9
相关论文
共 37 条
[1]   Chemical bath deposition of ZnS thin films and modification by air annealing [J].
Arenas, OL ;
Nair, MTS ;
Nair, PK .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1997, 12 (10) :1323-1330
[2]   Formation of CdxZn1-xS Films for Photovoltaic Buffer Layers by Atomic Layer Deposition [J].
Bakke, J. R. ;
Bent, S. F. .
ATOMIC LAYER DEPOSITION APPLICATIONS 5, 2009, 25 (04) :9-14
[3]   Optical and optoelectronic properties of ZnS nanostructured thin film [J].
Borah, J. P. ;
Sarma, K. C. .
ACTA PHYSICA POLONICA A, 2008, 114 (04) :713-719
[4]  
BOVI AJM, 1956, J AM PHARM ASSOC, V45, P765
[5]   Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols [J].
Chen, Zhebo ;
Jaramillo, Thomas F. ;
Deutsch, Todd G. ;
Kleiman-Shwarsctein, Alan ;
Forman, Arnold J. ;
Gaillard, Nicolas ;
Garland, Roxanne ;
Takanabe, Kazuhiro ;
Heske, Clemens ;
Sunkara, Mahendra ;
McFarland, Eric W. ;
Domen, Kazunari ;
Miller, Eric L. ;
Turner, John A. ;
Dinh, Huyen N. .
JOURNAL OF MATERIALS RESEARCH, 2010, 25 (01) :3-16
[6]   Structure, composition and optical properties of ZnS thin films prepared by spray pyrolysis [J].
Elidrissi, B ;
Addou, M ;
Regragui, M ;
Bougrine, A ;
Kachouane, A ;
Bernède, JC .
MATERIALS CHEMISTRY AND PHYSICS, 2001, 68 (1-3) :175-179
[7]   Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method [J].
Gode, F. ;
Gumus, C. ;
Zor, M. .
JOURNAL OF CRYSTAL GROWTH, 2007, 299 (01) :136-141
[8]   A NOVEL ATMOSPHERIC-PRESSURE TECHNIQUE FOR THE DEPOSITION OF ZNS BY ATOMIC LAYER EPITAXY USING DIMETHYLZINC [J].
HUNTER, A ;
KITAI, AH .
JOURNAL OF CRYSTAL GROWTH, 1988, 91 (1-2) :111-118
[9]   AFM studies on ZnS thin films grown by atomic layer epitaxy [J].
Ihanus, J ;
Ritala, M ;
Leskela, M ;
Prohaska, T ;
Resch, R ;
Friedbacher, G ;
Grasserbauer, M .
APPLIED SURFACE SCIENCE, 1997, 120 (1-2) :43-50