Optical and structural properties of ZnO nanorods grown on graphene oxide and reduced graphene oxide film by hydrothermal method

被引:61
作者
Alver, U. [1 ]
Zhou, W. [2 ,3 ]
Belay, B. [2 ,3 ]
Krueger, R. [2 ]
Davis, K. O. [2 ,3 ]
Hickman, N. S. [2 ,3 ]
机构
[1] Kahramanmaras Sutcu Imam Univ, Dept Phys, TR-46100 K Maras, Turkey
[2] Univ Cent Florida, Nanosci & Technol Ctr, Orlando, FL 32816 USA
[3] Florida Solar Energy Ctr, Cocoa, FL 32922 USA
关键词
ZnO nanorods; Graphene oxide; Hydrothermal; Seed layer; ELECTROCHEMICAL DEPOSITION; LARGE-AREA; TRANSPARENT; FABRICATION; COMPOSITE; NANOSTRUCTURES; NANOPARTICLES; TEMPERATURE; DEVICES;
D O I
10.1016/j.apsusc.2011.11.046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
ZnO nanorods were grown on graphene oxide (GO) and reduced graphene oxide (RGO) films with seed layers by using simple hydrothermal method. The GO films were deposited by spray coating and then annealed at 400 degrees C in argon atmosphere to obtain RGO films. The optical and structural properties of the ZnO nanorods were systematically studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and ultraviolet-visible spectroscopy. The XRD patterns and SEM images show that without a seed layer, no ZnO nanorod deposition occurs on GO or RGO films. Transmittance of ZnO nanorods grown on RGO films was measured to be approximately 83% at 550 nm. Furthermore, while transmittance of RGO films increases with ZnO nanorod deposition, transmittance of GO decreases. (C) 2011 Elsevier B. V. All rights reserved.
引用
收藏
页码:3109 / 3114
页数:6
相关论文
共 46 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[4]   Sonication-Assisted Fabrication and Post-Synthetic Modifications of Graphene-Like Materials [J].
Cravotto, Giancarlo ;
Cintas, Pedro .
CHEMISTRY-A EUROPEAN JOURNAL, 2010, 16 (18) :5246-5259
[5]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[6]   Surface and physical characteristics of ZnO:Al nanostructured films [J].
Fang, Te-Hua ;
Kang, Shao-Hui .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
[7]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[8]   The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films [J].
Guo, M ;
Diao, P ;
Wang, XD ;
Cai, SM .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (10) :3210-3215
[9]  
Hibino H., 2009, PHYS REV B, V1
[10]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899