Spectral analysis of fractional kinetic equations with random data

被引:128
作者
Anh, VV
Leonenko, NN
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[2] Cardiff Univ, Sch Math, Cardiff CF2 4YH, S Glam, Wales
[3] Kyiv Univ Natl, Dept Math, UA-252601 Kiev, Ukraine
基金
澳大利亚研究理事会;
关键词
fractional kinetic equation; fractional diffusion equation; scaling laws; renormalised solution; long-range dependence; non-Gaussian scenario; Mittag-Leffler function; Bessel potential; Riesz potential; stable distributions;
D O I
10.1023/A:1010474332598
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a spectral representation of the mean-square solution of the fractional kinetic equation (also known as fractional diffusion equation) with random initial condition. Gaussian and non-Gaussian limiting distributions of the renormalized solution of the fractional-in-time and in-space kinetic equation are described in terms of multiple stochastic integral representations.
引用
收藏
页码:1349 / 1387
页数:39
相关论文
共 80 条
[1]   STRATIFIED STRUCTURE OF THE UNIVERSE AND BURGERS-EQUATION - A PROBABILISTIC APPROACH [J].
ALBEVERIO, S ;
MOLCHANOV, SA ;
SURGAILIS, D .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (04) :457-484
[2]   A MULTIVARIATE LINNIK DISTRIBUTION [J].
ANDERSON, DN .
STATISTICS & PROBABILITY LETTERS, 1992, 14 (04) :333-336
[3]  
Andrews GE., 1999, SPECIAL FUNCTIONS, V71
[4]   Fractional diffusion and fractional heat equation [J].
Angulo, JM ;
Ruiz-Medina, MD ;
Anh, VV ;
Grecksch, W .
ADVANCES IN APPLIED PROBABILITY, 2000, 32 (04) :1077-1099
[5]   Non-Gaussian scenarios for the heat equation with singular initial conditions [J].
Anh, VV ;
Loenenko, NN .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (01) :91-114
[6]   Possible long-range dependence in fractional random fields [J].
Anh, VV ;
Angulo, JM ;
Ruiz-Medina, MD .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 80 (1-2) :95-110
[7]   Scaling laws for fractional, diffusion-wave equations with singular data [J].
Anh, VV ;
Leonenko, NN .
STATISTICS & PROBABILITY LETTERS, 2000, 48 (03) :239-252
[8]  
ANH VV, 2000, UNPUB RENORMALIZATIO
[9]  
[Anonymous], 1975, Asymptotic Expansions of Integrals
[10]  
[Anonymous], ANN GEOFISICA