Incorporation of non-nucleoside triphosphate analogues opposite to an abasic site by human DNA polymerases β and λ

被引:16
作者
Crespan, E
Zanoli, S
Khandazhinskaya, A
Shevelev, I
Jasko, M
Alexandrova, L
Kukhanova, M
Blanca, G
Villani, G
Hübscher, U
Spadari, S
Maga, G
机构
[1] CNR, IGM, I-27100 Pavia, Italy
[2] RAS, VA Engelhardt Mol Biol Inst, Moscow 119991, Russia
[3] Univ Zurich Irchel, Inst Vet Biochem & Mol Biol, CH-8057 Zurich, Switzerland
[4] CNRS, Inst Pharmacol & Biol Struct, F-31077 Toulouse, France
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1093/nar/gki723
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A novel class of non-nucleoside triphosphate analogues, bearing hydrophobic groups sterically similar to nucleosides linked to the alpha-phosphate but lacking the chemical functional groups of nucleic acids, were tested against six different DNA polymerases (polymerases). Human polymerases alpha, beta and lambda, and Saccharomyces cerevisiae polymerase IV, were inhibited with different potencies by these analogues. On the contrary, Escherichia coli polymerase I and HIV-1 reverse transcriptase were not. Polymerase beta incorporated these derivatives in a strictly Mn++-dependent manner. On the other hand, polymerase lambda could incorporate some alkyltriphosphate derivatives with both Mg++ and Mn++, but only opposite to an abasic site on the template strand. The active site mutant polymerase lambda Y505A showed an increased ability to incorporate the analogues. These results show for the first time that neither the base nor the sugar moieties of nucleotides are required for incorporation by family X DNA polymerases.
引用
收藏
页码:4117 / 4127
页数:11
相关论文
共 43 条
[1]   Insight into the catalytic mechanism of DNA polymerase β:: Structures of intermediate complexes [J].
Arndt, JW ;
Gong, WM ;
Zhong, XJ ;
Showalter, AK ;
Liu, J ;
Dunlap, CA ;
Lin, Z ;
Paxson, C ;
Tsai, MD ;
Chan, MK .
BIOCHEMISTRY, 2001, 40 (18) :5368-5375
[2]   Terminal deoxynucleotidyl transferase catalyzes the reaction of DNA phosphorylation [J].
Arzumanov, AA ;
Victorova, LS ;
Jasko, MV ;
Yesipov, DS ;
Krayevsky, AA .
NUCLEIC ACIDS RESEARCH, 2000, 28 (05) :1276-1281
[3]   Structural insights into the origins of DNA polymerase fidelity [J].
Beard, WA ;
Wilson, SH .
STRUCTURE, 2003, 11 (05) :489-496
[4]   Human DNA polymerases λ and β show different efficiencies of translesion DNA synthesis past abasic sites and alternative mechanisms for frameshift generation [J].
Blanca, G ;
Villani, G ;
Shevelev, I ;
Ramadan, K ;
Spadari, S ;
Hübscher, U ;
Maga, G .
BIOCHEMISTRY, 2004, 43 (36) :11605-11615
[5]   Human DNA polymerase λ diverged in evolution from DNA polymerase β toward specific Mn++ dependence:: a kinetic and thermodynamic study [J].
Blanca, G ;
Shevelev, I ;
Ramadan, K ;
Villani, G ;
Spadari, S ;
Hübscher, U ;
Maga, G .
BIOCHEMISTRY, 2003, 42 (24) :7467-7476
[6]   Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes [J].
Brautigam, CA ;
Steitz, TA .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (01) :54-63
[7]   Exploring the effects of active site constraints on HIV-1 reverse transcriptase DNA polymerase fidelity [J].
Cramer, J ;
Strerath, M ;
Marx, A ;
Restle, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (46) :43593-43598
[8]   High-fidelity in vivo replication of DNA base shape mimics without Watson-Crick hydrogen bonds [J].
Delaney, JC ;
Henderson, PT ;
Helquist, SA ;
Morales, JC ;
Essigmann, JM ;
Kool, ET .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (08) :4469-4473
[9]   Crystal structures of a template-independent DNA polymerase:: murine terminal deoxynucleotidyltransferase [J].
Delarue, M ;
Boulé, JB ;
Lescar, J ;
Expert-Bezançon, N ;
Jourdan, N ;
Sukumar, N ;
Rougeon, F ;
Papanicolaou, C .
EMBO JOURNAL, 2002, 21 (03) :427-439
[10]   DNA minor groove hydration probed with 4′-alkylated thymidines [J].
Detmer, I ;
Summerer, D ;
Marx, A .
CHEMICAL COMMUNICATIONS, 2002, (20) :2314-2315