Construction of θ-Poincare algebras and their invariants on Mθ

被引:53
作者
Koch, F [1 ]
Tsouchnika, E [1 ]
机构
[1] Univ Munich, Sekt Phys, D-80333 Munich, Germany
关键词
D O I
10.1016/j.nuclphysb.2005.04.019
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In the present paper we construct deformations of the Poincare algebra as representations on a noncommutative spacetime with canonical commutation relations. These deformations are obtained by solving a set of conditions by an appropriate ansatz for the deformed Lorentz generators. They turn out to be equivalent Hopf algebras of quantum universal enveloping algebra type with nontrivial antipodes. In order to present a notion of theta-deformed Minkowski space M-theta, we introduce Casimir operators and a spacetime invariant. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:387 / 403
页数:17
相关论文
共 47 条
[31]   Gauge theory on noncommutative spaces [J].
Madore, J ;
Schraml, S ;
Schupp, P ;
Wess, J .
EUROPEAN PHYSICAL JOURNAL C, 2000, 16 (01) :161-167
[32]   BICROSSPRODUCT STRUCTURE OF KAPPA-POINCARE GROUP AND NONCOMMUTATIVE GEOMETRY [J].
MAJID, S ;
RUEGG, H .
PHYSICS LETTERS B, 1994, 334 (3-4) :348-354
[33]   Q-DEFORMED POINCARE ALGEBRA [J].
OGIEVETSKY, O ;
SCHMIDKE, WB ;
WESS, J ;
ZUMINO, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (03) :495-518
[34]   6 GENERATOR Q-DEFORMED LORENTZ ALGEBRA [J].
OGIEVETSKY, O ;
SCHMIDKE, WB ;
WESS, J ;
ZUMINO, B .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 23 (03) :233-240
[35]   QUANTUM DEFORMATION OF LORENTZ GROUP [J].
PODLES, P ;
WORONOWICZ, SL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (02) :381-431
[36]  
Ramond P., 1990, FIELD THEORY MODERN
[37]   A Q-DEFORMED LORENTZ ALGEBRA [J].
SCHMIDKE, WB ;
WESS, J ;
ZUMINO, B .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1991, 52 (03) :471-476
[38]   D-branes and deformation quantization [J].
Schomerus, V .
JOURNAL OF HIGH ENERGY PHYSICS, 1999, (06) :XXXX-13
[39]   MAXWELL GROUP AND QUANTUM-THEORY OF PARTICLES IN CLASSICAL HOMOGENEOUS ELECTROMAGNETIC FIELDS [J].
SCHRADER, R .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1972, 20 (12) :701-734
[40]   String theory and noncommutative geometry [J].
Seiberg, N ;
Witten, E .
JOURNAL OF HIGH ENERGY PHYSICS, 1999, (09) :XLII-92