Preparation of LiFePO4 powders by co-precipitation

被引:106
作者
Yang, MR [1 ]
Ke, WH [1 ]
Wu, SH [1 ]
机构
[1] Tatung Univ, Dept Mat Engn, Taipei 104, Taiwan
关键词
LiFePO4; powders; co-precipitation; lithium-ion batteries;
D O I
10.1016/j.jpowsour.2005.03.127
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pure olivine LiFePO4 can be successfully prepared with co-precipitation from aqueous solution containing trivalent iron ion. The introduction of hydrolyzed sugar before heating give the best result, because the poor conductivity of the powders can be improved by synthesizing small and homogeneous powders with coatings of electronically conductive materials. The resultant LiFePO4/C composite with carbon scaffold and LiFePO4 embedded can achieve high specific capacity (143 mAh g(-1)) after the 100th cycle with 1 C charge/discharge rate at 50 degrees C. The excellent cycle life and stability as well as cheap precursor solution make the process feasible commercially. Moreover, since the only auxiliary product of thermal treatment in this process is water vapor, the process is more environmental friendly than other synthesized methods. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:539 / 543
页数:5
相关论文
共 20 条
[1]   Thermal stability of LiFePO4-based cathodes [J].
Andersson, AS ;
Thomas, JO ;
Kalska, B ;
Häggström, L .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (02) :66-68
[2]   The source of first-cycle capacity loss in LiFePO4 [J].
Andersson, AS ;
Thomas, JO .
JOURNAL OF POWER SOURCES, 2001, 97-8 :498-502
[3]   Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J].
Arnold, G ;
Garche, J ;
Hemmer, R ;
Ströbele, S ;
Vogler, C ;
Wohlfahrt-Mehrens, A .
JOURNAL OF POWER SOURCES, 2003, 119 :247-251
[4]   Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (03) :A53-A55
[5]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[6]   A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode [J].
Croce, F ;
D'Epifanio, A ;
Hassoun, J ;
Deptula, A ;
Olczac, T ;
Scrosati, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (03) :A47-A50
[7]   The role of carbon black distribution in cathodes for Li ion batteries [J].
Dominko, R ;
Gaberscek, M ;
Drofenik, J ;
Bele, M ;
Pejovnik, S ;
Jamnik, J .
JOURNAL OF POWER SOURCES, 2003, 119 :770-773
[8]   Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties [J].
Franger, S ;
Le Cras, F ;
Bourbon, C ;
Rouault, H .
JOURNAL OF POWER SOURCES, 2003, 119 :252-257
[9]   Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J].
Huang, H ;
Yin, SC ;
Nazar, LF .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A170-A172
[10]   A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes [J].
MacNeil, DD ;
Lu, ZH ;
Chen, ZH ;
Dahn, JR .
JOURNAL OF POWER SOURCES, 2002, 108 (1-2) :8-14