共 57 条
Stable Aqueous Dispersion of Graphene Nanosheets: Noncovalent Functionalization by a Polymeric Reducing Agent and Their Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Detection
被引:377
作者:
Liu, Sen
[1
]
Tian, Jingqi
[1
,2
]
Wang, Lei
[1
]
Li, Hailong
[1
]
Zhang, Yingwei
[1
]
Sun, Xuping
[1
]
机构:
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Jilin, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
关键词:
METAL NANOPARTICLES;
OXIDE;
CARBON;
REDUCTION;
SHEETS;
NANOCOMPOSITES;
NANORIBBONS;
SURFACTANT;
PHASE;
D O I:
10.1021/ma102230m
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
An aqueous dispersion of graphene nanosheets (GNs) has been successfully prepared via chemical reduction of graphene oxide (GO) by hydrazine hydrate in the presence of poly[(2-ethyldimethylammonioethyl methacrylate ethyl sulfate)-co-(1-vinylpyrrolidone)] (PQ11), a cationic polyelectrolyte, for the first time. The noncovalent functionalization of GN by PQ11 leads to a GN dispersion that can be very stable for several months without the observation of any floating or precipitated particles. Several analytical techniques including UV-vis spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) have been used to characterize the resulting GNs. Taking advantages of the fact that PQ11 is a positively charged polymer exhibiting reducing ability, we further demonstrated the subsequent decoration of GN with Ag nanoparticles (AgNPs) by two routes: (1) direct adsorption of preformed, negatively charged AgNPs; (2) in-situ chemical reduction of silver salts. It was found that such Ag/GN nanocomposites exhibit good catalytic activity toward the reduction of hydrogen peroxide (H2O2), leading to an enzymeless sensor with a fast amperometric response time of less than 2 s. The linear detection range is estimated to be from 100 mu M to 40 mM (r = 0.996), and the detection limit is estimated to be 28 mu M at a signal-to-noise ratio of 3.
引用
收藏
页码:10078 / 10083
页数:6
相关论文