Balanced 0, ± 1 matrices I.: Decomposition

被引:18
作者
Conforti, M
Cornuéjols, G
Kapoor, A
Vuskovic, K
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
[2] Carnegie Mellon Univ, GSIA, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[4] Univ Leeds, Sch Comp Studies, Leeds LS2 9JT, W Yorkshire, England
基金
美国国家科学基金会;
关键词
balanced matrix; decomposition; recognition algorithm; 2-join; 6-join; extended star cutset;
D O I
10.1006/jctb.2000.2010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 0, +/-1 matrix is balanced if, in every square submatrix with two nonzero entries per row and column, the sum of the entries is a multiple of four. This paper extends decomposition of balanced 0, 1 matrices obtained by Conforti, Cornuejols, and Rao (1999, J. Combin. Theory Ser. B77, 292-406) to the class of balanced 0, +/-1 matrices. As a consequence, we obtain a polynomial time algorithm fur recognizing balanced 0, +/- matrices. (C) 2001 Academic Press.
引用
收藏
页码:243 / 274
页数:32
相关论文
共 18 条
[1]  
BERGE C, 1970, C MATH SOC J BOLYAI, V4, P119
[2]  
Berge C., 1972, Math. Program., V2, P19
[3]   CHARACTERIZATION OF TOTALLY UNIMODULAR MATRICES [J].
CAMION, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (05) :1068-&
[4]   EXTENDED HORN SETS IN PROPOSITIONAL LOGIC [J].
CHANDRU, V ;
HOOKER, JN .
JOURNAL OF THE ACM, 1991, 38 (01) :205-221
[5]   STRUCTURAL-PROPERTIES AND RECOGNITION OF RESTRICTED AND STRONGLY UNIMODULAR MATRICES [J].
CONFORTI, M ;
RAO, MR .
MATHEMATICAL PROGRAMMING, 1987, 38 (01) :17-27
[6]   A CLASS OF LOGIC PROBLEMS SOLVABLE BY LINEAR-PROGRAMMING [J].
CONFORTI, M ;
CORNUEJOLS, G .
JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY, 1995, 42 (05) :1107-1113
[7]   Balanced 0,+/-1-matrices, bicoloring and total dual integrality [J].
Conforti, M ;
Cornuejols, G .
MATHEMATICAL PROGRAMMING, 1995, 71 (03) :249-258
[8]   Decomposition of balanced matrices [J].
Conforti, M ;
Cornuéjols, G ;
Rao, MR .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 77 (02) :292-406
[9]  
CONFORTI M, 1994, MATH PROGRAMMING STA, P1
[10]   COMPOSITIONS FOR PERFECT GRAPHS [J].
CORNUEJOLS, G ;
CUNNINGHAM, WH .
DISCRETE MATHEMATICS, 1985, 55 (03) :245-254