Topological delocalization of two-dimensional massless dirac fermions

被引:237
作者
Nomura, Kentaro
Koshino, Mikito
Ryu, Shinsei
机构
[1] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[2] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan
[3] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
关键词
D O I
10.1103/PhysRevLett.99.146806
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The beta function of a two-dimensional massless Dirac Hamiltonian subject to a random scalar potential, which, e.g., underlies theoretical descriptions of graphene, is computed numerically. Although it belongs to, from a symmetry standpoint, the two-dimensional symplectic class, the beta function monotonically increases with decreasing conductance. We also provide an argument based on the spectral flows under twisting boundary conditions, which shows that none of the states of the massless Dirac Hamiltonian can be localized.
引用
收藏
页数:4
相关论文
共 40 条
[11]   Relativistic Levinson theorem in two dimensions [J].
Dong, SH ;
Hou, XW ;
Ma, ZQ .
PHYSICAL REVIEW A, 1998, 58 (03) :2160-2167
[12]  
ESSIN AM, UNPUB PHYS REV B
[13]   Integrable sigma models with θ = π -: art. no. 104429 [J].
Fendley, P .
PHYSICAL REVIEW B, 2001, 63 (10) :19
[14]   Topological insulators in three dimensions [J].
Fu, Liang ;
Kane, C. L. ;
Mele, E. J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (10)
[15]   Topological insulators with inversion symmetry [J].
Fu, Liang ;
Kane, C. L. .
PHYSICAL REVIEW B, 2007, 76 (04)
[16]   Time reversal polarization and a Z2 adiabatic spin pump [J].
Fu, Liang ;
Kane, C. L. .
PHYSICAL REVIEW B, 2006, 74 (19)
[17]  
HIKAMI S, 1980, PROG THEOR PHYS, V63, P707, DOI 10.1143/PTP.63.707
[18]  
Imry Y., 1997, INTRO MESOSCOPIC PHY
[19]   Chiral tunnelling and the Klein paradox in graphene [J].
Katsnelson, M. I. ;
Novoselov, K. S. ;
Geim, A. K. .
NATURE PHYSICS, 2006, 2 (09) :620-625
[20]  
KHMELNITSKII DE, 1983, JETP LETT+, V38, P552