Carbon nanotube growth on carbon fibers

被引:160
作者
Zhu, S
Su, CH
Lehoczky, SL
Muntele, I
Ila, D
机构
[1] NASA, George C Marshall Space Flight Ctr, Univ Space Res Assoc, Huntsville, AL 35812 USA
[2] NASA, George C Marshall Space Flight Ctr, Sci Directorate, Micrograv Sci & Applicat Dept, Huntsville, AL 35812 USA
[3] Alabama A&M Univ, Ctr Irradiat Mat, Normal, AL 35762 USA
关键词
low dimensional structure; chemical vapor deposition processes; nanomaterials;
D O I
10.1016/S0925-9635(03)00205-X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon nanotubes (CNT) were synthesized on graphite fibers by thermal CVD. On the fiber surface, iron nanoparticles are coated and act as catalysts for CNT growth. The growth temperature ranges from 550 to 1000 degreesC at an ambient pressure. Methane and hydrogen gases with methane contents of 10-100% are used for the CNT synthesis. At high growth temperatures (>800 degreesC), the rapid inter-diffusion of the transition metal iron on the graphite surface results in a rough fiber surface with no CNT grown on the surface. When the growth temperature is relatively low (650-800 degreesC), CNT are fabricated on the graphite surface with catalytic particles on the nanotube top ends. Using micro Raman spectroscopy in the breath mode region, single-walled or multi-walled CNT can be determined, depending on methane concentrations. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:1825 / 1828
页数:4
相关论文
共 15 条
[1]   Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes [J].
Bandow, S ;
Asaka, S ;
Saito, Y ;
Rao, AM ;
Grigorian, L ;
Richter, E ;
Eklund, PC .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3779-3782
[2]   Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition [J].
Choi, YC ;
Shin, YM ;
Lee, YH ;
Lee, BS ;
Park, GS ;
Choi, WB ;
Lee, NS ;
Kim, JM .
APPLIED PHYSICS LETTERS, 2000, 76 (17) :2367-2369
[3]   Field-emission properties of aligned carbon nanotubes [J].
Hong, WK ;
Shih, HC ;
Tsai, SH ;
Shu, CT ;
Tarntair, FG ;
Cheng, HC .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2000, 39 (9AB) :L925-L928
[4]   Low-energy Raman-active phonons of multiwalled carbon nanotubes [J].
Jantoljak, H ;
Salvetat, JP ;
Forro, L ;
Thomsen, C .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 67 (01) :113-116
[5]   Chemical vapor deposition of methane for single-walled carbon nanotubes [J].
Kong, J ;
Cassell, AM ;
Dai, HJ .
CHEMICAL PHYSICS LETTERS, 1998, 292 (4-6) :567-574
[6]   Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor [J].
Li, WZ ;
Zhang, H ;
Wang, CY ;
Zhang, Y ;
Xu, LW ;
Zhu, K ;
Xie, SS .
APPLIED PHYSICS LETTERS, 1997, 70 (20) :2684-2686
[7]   Large-scale synthesis of aligned carbon nanotubes [J].
Li, WZ ;
Xie, SS ;
Qian, LX ;
Chang, BH ;
Zou, BS ;
Zhou, WY ;
Zhao, RA ;
Wang, G .
SCIENCE, 1996, 274 (5293) :1701-1703
[8]  
MURAKAMI H, 1999, APPL PHYS LETT, V74, P644
[9]   Synthesis of large arrays of well-aligned carbon nanotubes on glass [J].
Ren, ZF ;
Huang, ZP ;
Xu, JW ;
Wang, JH ;
Bush, P ;
Siegal, MP ;
Provencio, PN .
SCIENCE, 1998, 282 (5391) :1105-1107
[10]   Controlled production of aligned-nanotube bundles [J].
Terrones, M ;
Grobert, N ;
Olivares, J ;
Zhang, JP ;
Terrones, H ;
Kordatos, K ;
Hsu, WK ;
Hare, JP ;
Townsend, PD ;
Prassides, K ;
Cheetham, AK ;
Kroto, HW ;
Walton, DRM .
NATURE, 1997, 388 (6637) :52-55