Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons

被引:39
作者
Lin, Ming-Wei [1 ]
Ling, Cheng [1 ]
Agapito, Luis A. [2 ]
Kioussis, Nicholas [2 ]
Zhang, Yiyang [1 ,3 ]
Cheng, Mark Ming-Cheng [3 ]
Wang, Wei L. [4 ,5 ]
Kaxiras, Efthimios [4 ,5 ]
Zhou, Zhixian [1 ]
机构
[1] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA
[2] Calif State Univ Northridge, Dept Phys, Northridge, CA 91330 USA
[3] Wayne State Univ, Dept Elect & Comp Engn, Detroit, MI 48202 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
D O I
10.1103/PhysRevB.84.125411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report electrical transport measurements on a suspended ultra-low-disorder graphene nanoribbon (GNR) with nearly atomically smooth edges that reveal a high mobility exceeding 3000 cm(2) V-1 s(-1) and an intrinsic band gap. The experimentally derived band gap is in quantitative agreement with the results of our electronic structure calculations on chiral GNRs with comparable width taking into account the electron-electron interactions, indicating that the origin of the band gap in nonarmchair GNRs is partially due to the magnetic zigzag edges.
引用
收藏
页数:7
相关论文
共 44 条
[1]   Density inhomogeneity driven percolation metal-insulator transition and dimensional crossover in graphene nanoribbons [J].
Adam, S. ;
Cho, S. ;
Fuhrer, M. S. ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[2]   Performance of multiplicity-based energy correctors for molecules containing second-row elements [J].
Agapito, LA ;
Maffei, MG ;
Salazar, PF ;
Seminario, JM .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (12) :4260-4265
[3]   "Seamless" Graphene Interconnects for the Prospect of All-Carbon Spin-Polarized Field-Effect Transistors [J].
Agapito, Luis A. ;
Kioussis, Nicholas .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (06) :2874-2879
[4]   High-Throughput Synthesis of Graphene by Intercalation - Exfoliation of Graphite Oxide and Study of Ionic Screening in Graphene Transistor [J].
Ang, Priscilla Kailian ;
Wang, Shuai ;
Bao, Qiaoliang ;
Thong, John T. L. ;
Loh, Kian Ping .
ACS NANO, 2009, 3 (11) :3587-3594
[5]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[6]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[7]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[8]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[9]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[10]   Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor [J].
Cheng, S. -H. ;
Zou, K. ;
Okino, F. ;
Gutierrez, H. R. ;
Gupta, A. ;
Shen, N. ;
Eklund, P. C. ;
Sofo, J. O. ;
Zhu, J. .
PHYSICAL REVIEW B, 2010, 81 (20)