Analysis of the dynamics of a realistic ecological model

被引:78
作者
Letellier, C
Aziz-Alaoui, MA
机构
[1] Univ Rouen, CORIA, UMR 6614, F-76821 Mont St Aignan, France
[2] Fac Sc Tech, LM, Dept Math, F-76058 Le Havre, France
关键词
D O I
10.1016/S0960-0779(00)00239-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A fairly realistic three-species food chain model based on the Leslie-Gower scheme is investigated by using tools borrowed from the nonlinear dynamical systems theory. It is observed that two co-existing attractors may be generated by this ecological model. A type-I intermittency is characterized and a homoclinic orbit is found. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:95 / 107
页数:13
相关论文
共 25 条
[1]  
AZIZALAOUI MA, 2000, UNPUB SIAM J APPL MA
[2]  
COLLET P, 1980, PROGR PHYSICS
[3]  
Coullet P., 1978, J PHYSIQUE C, V39, P25
[4]   PERIODIC-ORBITS AS THE SKELETON OF CLASSICAL AND QUANTUM CHAOS [J].
CVITANOVIC, P .
PHYSICA D, 1991, 51 (1-3) :138-151
[5]   ANTIMONOTONICITY - INEVITABLE REVERSALS OF PERIOD-DOUBLING CASCADES [J].
DAWSON, SP ;
GREBOGI, C ;
YORKE, JA ;
KAN, I ;
KOCAK, H .
PHYSICS LETTERS A, 1992, 162 (03) :249-254
[6]  
DUTERTRE P, 1995, THESIS U ROUEN FRANC
[7]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[8]   BIFURCATION PHENOMENA NEAR HOMOCLINIC SYSTEMS - A 2-PARAMETER ANALYSIS [J].
GASPARD, P ;
KAPRAL, R ;
NICOLIS, G .
JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (5-6) :697-727
[9]   WHAT CAN WE LEARN FROM HOMOCLINIC ORBITS IN CHAOTIC DYNAMICS [J].
GASPARD, P ;
NICOLIS, G .
JOURNAL OF STATISTICAL PHYSICS, 1983, 31 (03) :499-518
[10]   Topological analysis of chaotic dynamical systems [J].
Gilmore, R .
REVIEWS OF MODERN PHYSICS, 1998, 70 (04) :1455-1529