High-resolution, back-side illuminated monolithic active pixel sensor for low-energy electron imaging

被引:14
作者
Deptuch, G [1 ]
Dulinski, W
Caccia, M
Winter, M
机构
[1] ULP, IN2P3, LEPSI, CNRS,IReS, F-67037 Strasbourg, France
[2] UST, AGH, Dept Elect, PL-30059 Krakow, Poland
[3] Univ Insubria, I-22100 Como, Italy
关键词
APS; autoradiography; back illumination; beam monitoring; GMOS; electron microscopy; HPD; low-energy electrons; monolithic active pixel sensors; radiation detectors;
D O I
10.1109/TNS.2005.856585
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new domain of application of monolithic active pixel sensors, with respect to particle tracking, has been triggered by the innovative idea of a nondestructive beam monitoring system in the extraction lines of a hadron-theraphy center. The beam monitoring exploits secondary electrons emitted from a submicrometer thick Al foil, intersecting the beam. Electrons are accelerated in an electrostatic field. The detection of low-energy electrons, up to 30 keV, is required. The sensitivity to these energies is obtained by thinning the detector, originally fabricated in a standard VLSI technology, down to the thickness of the radiation sensitive layer. A thin entrance window, in the order of 100 nm, is provided. Monolithic active pixel sensors for low-energy electron imaging can be prospectively used in several domains: in bioscience for cell process study using radiotracers, e.g., H-3(18 keV beta(-)) or fluorescence imaging exploiting the Hybrid Photodiodes principle, in safety or environmental studies for neutron imaging with converters directly deposited or in micro-beam facilities for position resolving in studies of living cell irradiations. The low-energy electron imaging capabilities for installation inside an HPD test facility and the results obtained with a H-3 marked source are shown. The detector used is the 1 x 10(6) pixel MIMOSA V chip. The back-thinning up to the epitaxial layer was applied, resulting in a high resolution, back-side illuminated imager.
引用
收藏
页码:1745 / 1754
页数:10
相关论文
共 14 条
[1]   Use of silicon and GaAs pixel detectors for digital autoradiography [J].
Amendolia, SR ;
Beccherle, R ;
Bertolucci, E ;
Bisogni, MG ;
Bottigli, U ;
Campbell, M ;
Chesi, E ;
Ciocci, MA ;
Conti, M ;
DaVia, C ;
DelGuerra, A ;
DAuria, S ;
Fantacci, ME ;
Gambaccini, M ;
Grossi, G ;
Heijne, E ;
Mancini, E ;
Marchesini, R ;
Middelkamp, P ;
OShea, V ;
Randaccio, P ;
Romeo, N ;
Rosso, V ;
Russo, P ;
Scharfetter, L ;
Smith, K ;
Snoeys, W ;
Stefanini, A .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1997, 44 (03) :929-933
[2]   Secondary emission monitor for low-interception monitoring (SLIM): An innovative nondestructive beam monitor for the extraction lines of a hadrontherapy center [J].
Badano, L ;
Ferrando, O ;
Klatka, T ;
Koziel, M ;
Molinari, G ;
Pezzetta, M .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2004, 51 (06) :2990-2998
[3]   Development, fabrication and test of a highly segmented hybrid photodiode [J].
Braem, A ;
Chesi, E ;
Joram, C ;
Séguinot, J ;
Weilhammer, P ;
Ypsilantis, T .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 478 (1-2) :400-403
[4]   Silicon Ultra fast Cameras for electron and γ sources In Medical Applications [J].
Caccia, M ;
Airoldi, A ;
Alemi, M ;
Amati, M ;
Badano, L ;
Bartsch, V ;
Berst, D ;
Bianchi, C ;
Bol, H ;
Bulgheroni, A ;
Cannillo, F ;
Cappellini, C ;
Czermak, A ;
Claus, G ;
Colledani, C ;
Conte, L ;
Deptuch, G ;
de Boer, W ;
Dierlamm, A ;
Domanski, K ;
Dulinski, W ;
Dulny, B ;
Ferrando, O ;
Grigoriev, E ;
Grabiec, P ;
Lorusso, R ;
Jaroszewicz, B ;
Jungermann, L ;
Kucewicz, W ;
Kucharski, K ;
Kuta, S ;
Leo, G ;
Machowski, W ;
Marczewski, J ;
Mondry, G ;
Niemiec, H ;
Novario, R ;
Paolucci, L ;
Pezzetta, M ;
Popowski, Y ;
Riester, JL ;
Sampietro, C ;
Sapor, M ;
Schweickert, H ;
Spanò, B ;
Tomaszewski, D ;
Zalewska, A .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 125 :133-138
[5]  
CZERMAK A, 2001, MED APPL SUCIMA IMAG
[6]   Design and testing of Monolithic Active Pixel Sensors for charged particle tracking [J].
Deptuch, G ;
Berst, JD ;
Claus, G ;
Colledani, C ;
Dulinski, W ;
Gornushkin, Y ;
Husson, D ;
Riester, JL ;
Winter, M .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2002, 49 (02) :601-610
[8]   Development of monolithic active pixel sensors for charged particle tracking [J].
Deptuch, G ;
Claus, G ;
Colledani, C ;
Deveaux, M ;
Gay, A ;
Dulinkski, W ;
Gornushkin, Y ;
Hu-Guo, C ;
Winter, M .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 511 (1-2) :240-249
[9]  
DULINSKI W, P 6 INT WORKSH RAD I
[10]   Tracking performance and radiation tolerance of monolithic active pixel sensors [J].
Gornushkin, Y ;
Deveaux, M ;
Gay, A ;
Himmi, A ;
Hu, C ;
Valin, I ;
Winter, M ;
Colledani, C ;
Claus, G ;
Deptuch, G ;
Dulinski, W .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 513 (1-2) :291-295