Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1

被引:97
作者
Katahira, Satoshi [2 ]
Ito, Meguru [2 ]
Takema, Hisae [1 ]
Fujita, Yasuya [2 ]
Tanino, Takanori [1 ]
Tanaka, Tsutomu
Fukuda, Hideki
Kondo, Akihiko [1 ]
机构
[1] Kobe Univ, Grad Sch Engn, Dept Sci & Chem Engn, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] Kobe Univ, Grad Sch Sci & Technol, Dept Mol Sci & Mat Engn, Kobe, Hyogo 6578501, Japan
关键词
Saccharomyces cerevisiae; xylose fermentation; co-fermentation; transporter; Sut1;
D O I
10.1016/j.enzmictec.2008.03.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Enhancing the sugar uptake ability of the yeast Saccharomyces cerevisiae is a potentially important factor for efficient ethanol production during fermentation of lignocellulosic biomass. Here, we attempted to express a Pichia stipitis gene encoding a sugar transporter, SUT1, in a xylose-assimilating S. cerevisiae strain that expresses xylose reductase, xylosedehydrogenase and xylulokinase. We next investigated xylose fermentation, glucose fermentation and glucose and xylose co-fermentation using the Sut1-expressing S. cerevisiae strain. Expression of Sut1 in xylose-assimilating S. cerevisiae increased both xylose uptake ability and ethanol productivity during xylose fermentation. Moreover, glucose uptake ability and ethanol productivity during glucose fermentation also increased by expressing of Sut1. The yield of ethanol during xylose and glucose co-fermentation by the Sut1-expressing yeast strain (0.44 g/g-consumed sugar) was significantly higher than that of the parental strain (0.39 g/g-consumed sugar). (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:115 / 119
页数:5
相关论文
共 22 条
[1]  
Arisitidon A, 2000, CURR OPIN BIOTECH, V11, P89
[2]   DIRECT EVIDENCE FOR A XYLOSE METABOLIC PATHWAY IN SACCHAROMYCES-CEREVISIAE [J].
BATT, CA ;
CARVALLO, S ;
EASSON, DD ;
AKEDO, M ;
SINSKEY, AJ .
BIOTECHNOLOGY AND BIOENGINEERING, 1986, 28 (04) :549-553
[3]  
CHU BC, 2007, APPL MICROBIOL BIOT, V25, P425
[4]   Genetic improvement of Saccharomyces cerevisiae for xylose fermentation [J].
Chu, Byron C. H. ;
Lee, Hung .
BIOTECHNOLOGY ADVANCES, 2007, 25 (05) :425-441
[5]   Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures [J].
Eliasson, A ;
Christensson, C ;
Wahlbom, CF ;
Hahn-Hägerdal, B .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (08) :3381-3386
[6]   High capacity xylose transport in Candida intermedia PYCC 4715 [J].
Gárdonyi, M ;
Österberg, M ;
Rodrigues, C ;
Spencer-Martins, I ;
Hahn-Hägerdal, B .
FEMS YEAST RESEARCH, 2003, 3 (01) :45-52
[7]   Bio-ethanol -: the fuel of tomorrow from the residues of today [J].
Hahn-Hagerdal, B. ;
Galbe, M. ;
Gorwa-Grauslund, M. F. ;
Liden, G. ;
Zacchi, G. .
TRENDS IN BIOTECHNOLOGY, 2006, 24 (12) :549-556
[8]   Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization [J].
Hamacher, T ;
Becker, J ;
Gárdonyi, M ;
Hahn-Hägerdal, B ;
Boles, E .
MICROBIOLOGY-SGM, 2002, 148 :2783-2788
[9]  
Ho N W, 1999, Adv Biochem Eng Biotechnol, V65, P163
[10]   Metabolic engineering for improved fermentation of pentoses by yeasts [J].
Jeffries, TW ;
Jin, YS .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2004, 63 (05) :495-509