A group-theoretic framework for the construction of packings in grassmannian spaces

被引:47
作者
Calderbank, AR [1 ]
Hardin, RH [1 ]
Rains, EM [1 ]
Shor, PW [1 ]
Sloane, NJA [1 ]
机构
[1] AT&T Bell Labs, Res, Informat Sci Res, Florham Pk, NJ 07932 USA
关键词
Grassmannian packings; quantum computing; orthogonal geometry; Clifford group;
D O I
10.1023/A:1018673825179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using totally isotropic subspaces in an orthogonal space Omega(+)(2i, 2), several infinite families of packings of 2(k) -dimensional subspaces of real 2(i) -dimensional space are constructed, some of which are shown to be optimal packings. A certain Clifford group underlies the construction and links this problem with Barnes-Wall lattices, Kerdock sets and quantum-error-correcting codes.
引用
收藏
页码:129 / 140
页数:12
相关论文
共 22 条
[1]  
APPLEGATE D, 1993, COMMUNICATION
[2]  
Aschbacher M., 2000, FINITE GROUP THEORY
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]  
Bolt B., 1961, J AUSTR MATH SOC, V2, P80
[5]  
BOLT B, 1961, J AUSTR MATH SOC, V2, P60
[6]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[7]   Z(4)-Kerdock codes, orthogonal spreads, and extremal euclidean line-sets [J].
Calderbank, AR ;
Cameron, PJ ;
Kantor, WM ;
Seidel, JJ .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1997, 75 :436-480
[8]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[9]   Quantum-error correction and orthogonal geometry [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :405-408
[10]  
Conway J. H., 1996, EXP MATH, V5, P139