Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation

被引:275
作者
Khan, Umar [1 ,2 ]
O'Neill, Arlene [1 ,2 ]
Porwal, Harshit [1 ,2 ]
May, Peter [1 ,2 ]
Nawaz, Khalid [3 ]
Coleman, Jonathan N. [1 ,2 ]
机构
[1] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland
[2] Trinity Coll Dublin, CRANN, Dublin 2, Ireland
[3] NUST, Sch Chem & Mat Engn, Islamabad, Pakistan
基金
爱尔兰科学基金会;
关键词
LIQUID-PHASE EXFOLIATION; GRAPHITE; OXIDE; NANOCOMPOSITES; NANOSHEETS; REDUCTION;
D O I
10.1016/j.carbon.2011.09.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid exfoliation of graphene generally results in flakes with lateral size of one micron or less on average, too small for many applications. In this paper we describe a method to separate an existing dispersion with mean flake length of similar to 1 mu m into fractions, each with different mean flake size. The initial dispersion is centrifuged at a high centrifugation rate, separating small flakes in the supernatant from large flakes in the sediment. Redispersion of the sediment, followed by successive centrifugation, separation and redispersion cycles can be used to separate the flakes by size so long as the centrifugation rate is decreased with each cycle. This procedure results in a range of dispersions with mean flake length varying from 1 mu m for the highest final centrifugation rate to 3.5 mu m for the sample whose final centrifugation rate was 500 rpm. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:470 / 475
页数:6
相关论文
共 47 条
[11]   Separation of carbon nanotubes by size exclusion chromatography [J].
Duesberg, GS ;
Burghard, M ;
Muster, J ;
Philipp, G ;
Roth, S .
CHEMICAL COMMUNICATIONS, 1998, (03) :435-436
[12]   Graphene-based Composite Thin Films for Electronics [J].
Eda, Goki ;
Chhowalla, Manish .
NANO LETTERS, 2009, 9 (02) :814-818
[13]   Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite [J].
Gong, Lei ;
Kinloch, Ian A. ;
Young, Robert J. ;
Riaz, Ibtsam ;
Jalil, Rashid ;
Novoselov, Konstantin S. .
ADVANCED MATERIALS, 2010, 22 (24) :2694-+
[14]   Emerging Methods for Producing Monodisperse Graphene Dispersions [J].
Green, Alexander A. ;
Hersam, Mark C. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (02) :544-549
[15]   Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation [J].
Green, Alexander A. ;
Hersam, Mark C. .
NANO LETTERS, 2009, 9 (12) :4031-4036
[16]   High-Yield Organic Dispersions of Unfunctionalized Graphene [J].
Hamilton, Christopher E. ;
Lomeda, Jay R. ;
Sun, Zhengzong ;
Tour, James M. ;
Barron, Andrew R. .
NANO LETTERS, 2009, 9 (10) :3460-3462
[17]   Aqueous dispersions of TCNQ-anion-stabilized graphene sheets [J].
Hao, Rui ;
Qian, Wen ;
Zhang, Luhui ;
Hou, Yanglong .
CHEMICAL COMMUNICATIONS, 2008, (48) :6576-6578
[18]   Solution-phase exfoliation of graphite for ultrafast photonics [J].
Hasan, T. ;
Torrisi, F. ;
Sun, Z. ;
Popa, D. ;
Nicolosi, V. ;
Privitera, G. ;
Bonaccorso, F. ;
Ferrari, A. C. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (11-12) :2953-2957
[19]   High-yield production of graphene by liquid-phase exfoliation of graphite [J].
Hernandez, Yenny ;
Nicolosi, Valeria ;
Lotya, Mustafa ;
Blighe, Fiona M. ;
Sun, Zhenyu ;
De, Sukanta ;
McGovern, I. T. ;
Holland, Brendan ;
Byrne, Michele ;
Gun'ko, Yurii K. ;
Boland, John J. ;
Niraj, Peter ;
Duesberg, Georg ;
Krishnamurthy, Satheesh ;
Goodhue, Robbie ;
Hutchison, John ;
Scardaci, Vittorio ;
Ferrari, Andrea C. ;
Coleman, Jonathan N. .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :563-568
[20]   Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery [J].
Hernandez, Yenny ;
Lotya, Mustafa ;
Rickard, David ;
Bergin, Shane D. ;
Coleman, Jonathan N. .
LANGMUIR, 2010, 26 (05) :3208-3213